
Yorc Documentation
Release 4.0.1

Atos BDS R&D

May 14, 2020

Contents

1 Install Yorc and requirements 1
1.1 Typical Yorc deployment for OpenStack . 1
1.2 Host requirements . 2
1.3 Packages installation . 2
1.4 Final setup . 4

2 Bootstrap a full stack installation 5
2.1 Prerequisites . 5
2.2 Bootstrap process overview . 6
2.3 Bootstrapping the setup in interactive mode . 7
2.4 Bootstrapping the setup using command line options . 8
2.5 Bootstrapping the setup using environment variables . 9
2.6 Bootstrapping the setup using a configuration file . 9
2.7 Exporting and loading an interactive configuration file . 14

3 Troubleshooting 15

4 Yorc Server Configuration 17
4.1 Globals Command-line options . 17
4.2 Configuration files . 19
4.3 Environment variables . 25
4.4 Locations configuration . 27
4.5 Builtin locations types configuration . 28
4.6 Storage configuration . 31
4.7 Vault configuration . 35
4.8 Builtin Vaults configuration . 36

5 Yorc Client CLI Configuration 37
5.1 Command-line options . 37
5.2 Configuration files . 38
5.3 Environment variables . 38

6 Starting Yorc 39
6.1 Starting Consul . 39
6.2 Starting Yorc . 39

7 Yorc Command Line Interface 41

i

7.1 General Options . 41
7.2 CLI Commands related to deployments . 41
7.3 CLI Commands related to locations . 46
7.4 CLI Commands related to hosts pool . 48

8 Yorc Supported infrastructures 53
8.1 Hosts Pool . 53
8.2 Slurm . 58
8.3 Google Cloud Platform . 59
8.4 AWS . 59
8.5 OpenStack . 60
8.6 Kubernetes . 60

9 TOSCA support in Yorc 61
9.1 TOSCA Operations . 61

10 Run Yorc in Secured mode 67
10.1 Generate SSL certificates with SAN . 67
10.2 Secured Consul cluster Setup . 68
10.3 Secured Yorc Setup . 69
10.4 Secured Yorc CLI Setup . 70
10.5 Setup Alien4Cloud security . 70

11 Integrate Yorc with a Vault 71
11.1 HashiCorp’s Vault integration . 71

12 Run Yorc in High Availability (HA) mode 73
12.1 High level view of a typical HA installation . 73
12.2 Yorc HA setup . 74

13 Run Yorc in a docker container 75
13.1 Image components . 75

14 Yorc Telemetry 79
14.1 Key metrics . 80

15 Performance 85
15.1 Consul Storage . 85
15.2 TOSCA Operations . 86

16 Upgrades 87
16.1 Upgrading to Yorc 3.2.0 . 87
16.2 Upgrading to Yorc 3.1.0 . 88

17 Yorc Plugins (Advanced) 89
17.1 Yorc extension points . 89
17.2 How to create a Yorc plugin . 90

18 Premium features 99
18.1 Providing scripts outputs live in Yorc logs . 99
18.2 Deployment update . 99

19 Known issues 101
19.1 BER for SSH private key is not supported . 101

ii

CHAPTER 1

Install Yorc and requirements

This section describes how to install Yorc manually. Different ways of installing Yorc are described in other sections:

• Bootstrap a full stack installation using yorc bootstrap CLI. This will allow you deploy Yorc, its depen-
dencies, and the UI Alien4Cloud on a given infrastructure (Google Cloud, AWS, OpenStack or Hosts Pool)

• Run Yorc in a docker container.

1.1 Typical Yorc deployment for OpenStack

In order to provision softwares on virtual machines that do not necessary have a floating IP we recommend to install
Yorc itself on a virtual machine in your OpenStack tenant. Alien4Cloud and the Alien4Cloud Yorc Plugin (see their
dedicated documentation to know how to install them) may be collocated on the same VM or resides in a different
VM.

Virtual Machines created by Yorc should be connected to the same private network as the Yorc VM (the location
property private_network_name related to an openstack location type allows to do it automatically). In order to
provision Floating IPs, this private network should be connected to the public network of the tenant through a router.

1

Yorc Documentation, Release 4.0.1

1.2 Host requirements

Yorc requires a Linux x86_64 system to operate with at least 2 CPU and 2 Go of RAM.

1.3 Packages installation

Following packages are required to perform the installation:

• python and python-pip (or python3/python3-pip. In addition, to have Ansible use python3 on remote hosts,
see Ansible Inventory Configuration section)

• zip/unzip

• openssh-client

• wget

Now you can proceed with the installation of softwares used by Yorc.

sudo pip install ansible==2.7.9
wget https://releases.hashicorp.com/consul/1.2.3/consul_1.2.3_linux_amd64.zip
sudo unzip consul_1.2.3_linux_amd64.zip -d /usr/local/bin
wget https://releases.hashicorp.com/terraform/0.11.8/terraform_0.11.8_linux_

→˓amd64.zip
sudo unzip terraform_0.11.8_linux_amd64.zip -d /usr/local/bin

As Terraform uses plugins for required providers, you can pre-installed them in a directory you specify with
the Yorc Server configuration option (–terraform_plugins_dir). Here are the command lines for installing all
providers in /var/terraform/plugins. See https://www.terraform.io/guides/running-terraform-in-automation.
html#pre-installed-plugins for more information.

2 Chapter 1. Install Yorc and requirements

https://www.terraform.io/guides/running-terraform-in-automation.html#pre-installed-plugins
https://www.terraform.io/guides/running-terraform-in-automation.html#pre-installed-plugins

Yorc Documentation, Release 4.0.1

sudo mkdir -p /var/terraform/plugins

wget https://releases.hashicorp.com/terraform-provider-consul/2.1.0/terraform-
→˓provider-consul_2.1.0_linux_amd64.zip
sudo unzip terraform-provider-consul_2.1.0_linux_amd64.zip -d /var/terraform/

→˓plugins

wget https://releases.hashicorp.com/terraform-provider-null/1.0.0/terraform-
→˓provider-null_1.0.0_linux_amd64.zip
sudo unzip terraform-provider-null_1.0.0_linux_amd64.zip -d /var/terraform/

→˓plugins

wget https://releases.hashicorp.com/terraform-provider-aws/1.36.0/terraform-
→˓provider-aws_1.36.0_linux_amd64.zip
sudo unzip terraform-provider-aws_1.36.0_linux_amd64.zip -d /var/terraform/

→˓plugins

wget https://releases.hashicorp.com/terraform-provider-google/1.18.0/
→˓terraform-provider-google_1.18.0_linux_amd64.zip
sudo unzip terraform-provider-google_1.18.0_linux_amd64.zip -d /var/terraform/

→˓plugins

wget https://releases.hashicorp.com/terraform-provider-openstack/1.9.0/
→˓terraform-provider-openstack_1.9.0_linux_amd64.zip
sudo unzip terraform-provider-openstack_1.9.0_linux_amd64.zip -d /var/

→˓terraform/plugins

sudo chmod 775 /var/terraform/plugins/*

Finally you can install the Yorc binary into /usr/local/bin.

To support Orchestrator-hosted operations sandboxed into Docker containers the following softwares should also be
installed.

for apt based distributions
sudo apt install Docker
for yum based distributions
sudo yum install Docker
Docker should be running and configured to works with http proxies if any
sudo systemctl enable docker
sudo systemctl start docker

sudo pip install docker-py

For a complete Ansible experience please install the following python libs:

To support json_query filter for jinja2
sudo pip install jmespath
To works easily with CIDRs
sudo pip install netaddr

To support Ansible SSH password authentication instead of common ssh keys, the sshpass helper program needs to be
installed too.

for apt based distributions
sudo apt install sshpass

(continues on next page)

1.3. Packages installation 3

Yorc Documentation, Release 4.0.1

(continued from previous page)

for yum based distributions
sudo yum install sshpass

1.4 Final setup

In order to provision softwares through ssh, you need to store the ssh private key that will be used to connect to the
nodes under $HOME/.ssh/yorc.pem where $HOME is the home directory of the user running Yorc. This key
should part of the authorized keys on remote hosts. Generally, for OpenStack, it corresponds to the private key of the
keypair used to create the instance.

Note: A common issue is to create a key file that does not comply the ssh requirements for private keys (should be
readable by the user but not accessible by group/others read/write/execute).

4 Chapter 1. Install Yorc and requirements

CHAPTER 2

Bootstrap a full stack installation

The command yorc bootstrap can be used to bootstrap the full stack, from Alien4Cloud to Yorc and its depen-
dencies, over different types of infrastructures, on a single node or distributed on several nodes.

2.1 Prerequisites

2.1.1 Hosts

The local host from where the command yorc bootstrap will be run, as well as remote hosts where the full stack
will be deployed, should be Linux x86_64 systems operating with at least 2 CPUs and 4 Go of RAM. The bootstrap
was validated on:

• CentOS 7,

• Red Hat Enterprise Linux 7.5,

• Ubuntu 19.04 (which is installing python3 by default, see bootstrap configuration file example below for specific
Ansible configuration settings needed for remote hosts using python3).

2.1.2 Packages

The bootstrap operation will install a basic Yorc setup on the local host.

It requires the following packages to be installed on the local host:

• python and python-pip (or python3/python3-pip)

• zip/unzip

• openssh-client

• openssl (to generate certificates when they are not provided)

• wget

5

Yorc Documentation, Release 4.0.1

This basic installation on the local host will attempt to install without sudo privileges python ansible module 2.7.9
if needed as well as python packages MarkupSafe, jinja2, PyYAML, six, cryptography, setuptools. So if this ansible
module or python packages are not yet installed on the local host, you could either add them yourself, with sudo
privileges, running for example:

sudo pip install ansible==2.7.9

Or you could create a python virtual environment, and let the Yorc bootstrap command install the ansible module
within this virtual environment (operation which doesn’t require sudo privileges).

You can run these commands to create a virtual environment, here a virtual environment called yorcenv:

sudo pip install virtualenv
virtualenv yorcenv
source yorcenv/bin/activate

You are now ready to download Yorc binary, running:

wget https://github.com/ystia/yorc/releases/download/v4.0.1/yorc-4.0.1.tgz
tar xzf yorc-4.0.1.tgz
./yorc bootstrap --help

2.1.3 Define firewall rules on your Cloud Provider infrastructure

To access Alien4Cloud UI from the local host, you may need to define firewall rules before attempting to bootstrap
the full stack on a cloud provider infrastructure.

For example on Google Cloud, you could define this firewall rule for the port 8088 used by the UI, and associate it to
a tag (here a4c) :

$ gcloud compute firewall-rules create a4c-rule \
--allow tcp:8088 --target-tags a4c

You could then specify this tag a4c in the compute instance to create by the bootstrap deployment, as it is done in
Google Configuration file example. This way the created compute instance where Alien4Cloud will be deployed will
have its port 8088 open.

2.2 Bootstrap process overview

The command yorc bootstrap will configure on the local host a basic setup with Yorc and a Consul data store.

This basic setup will then be used to bootstrap the full stack Alien4Cloud/Yorc and its dependencies over a selected
location.

You can deploy the full stack either on a single node (by default), or distributed on several nodes as described in Run
Yorc in HA mode, using yorc bootstrap command line option --deployment_type HA described below.

When flag --insecure is not specified, a secured installation will performed:

• TLS with mutual authentication between components will be configured,

• a Vault will be installed and used to store location credentials.

Configuration values can be provided by the user:

• in interactive mode,

• through a configuration file,

6 Chapter 2. Bootstrap a full stack installation

Yorc Documentation, Release 4.0.1

• using yorc bootstrap command line options

• using environment variables.

You can combine these modes, yorc bootstrap will check in any case if required configuration values are miss-
ing, and will ask for missing values.

These configuration values will allow you to specify:

• optional Alien4Cloud configuration values

• Yorc configuration values, all optional, except from:

– the path to a ssh private key that will be used by the local orchestrator to connect to the bootstrapped
setup

– the Certificate authority private key passphrase to use in the default secure mode (while the
other properties, Certificate Authority private key and PEM-encoded Certificate Authority, are op-
tional. If not provided, they will be generated, and the generated Certificate Authority at work/
bootstrapResources/ca.pem can then be imported in your Web browser as a trusted Certifi-
cate Authority)

• Location configuration with required configuration values depending on the infrastructure type, as described at
Locations Configuration

• Configuration of compute Nodes to create on demand,

• User used to connect to these compute nodes,

• Configuration of the connection to public network created on demand.

Details of these on-demand resources configuration values are provided in the Alien4Cloud Yorc plugin Documen-
tation at https://yorc-a4c-plugin.readthedocs.io/en/latest/location.html. For example, in the Google Configuration file
example, you can see on-demand compute and address configuration values.

Once configuration settings are provided, yorc bootstrap will proceed to the full stack deployment, showing
deployment steps progress (by default, but you can see deployment logs instead trough the option --follow logs
described below).

Once the deployment is finished, the orchestrator on the local host is still running, so you can perform commands
like ./yorc deployments list, ./yorc deployments logs -b, etc. . . Or perform any deployment
troubleshooting if needed.

To undeploy a bootstrapped setup, you can also use the CLI, running ./yorc deployments undeploy
<deployment id>.

To clean the local host setup, run:

./yorc bootstrap cleanup

This will only clean the local host environment, it won’t undeploy the bootstrapped setup installed on remote hosts. It
stops the local yorc and consul servers, cleans files in working directory except from downloaded bundles, on purpose
as some of them take time to be downloaded.

2.3 Bootstrapping the setup in interactive mode

You can bootstrap the setup in interactive mode running:

./yorc bootstrap [--review]

2.3. Bootstrapping the setup in interactive mode 7

https://yorc-a4c-plugin.readthedocs.io/en/latest/location.html

Yorc Documentation, Release 4.0.1

You will have then to select the infrastructure type (Google Cloud, AWS, OpenStack, Hosts Pool) and provide a name
to the location on which you want to deploy the full stack, then you will be asked to provide configuration values
depending on the infrastructure type.

The command line option --review allows to review and update all configuration values before proceeding to the
deployment, opening the editor specified in the environment variable EDITOR if defined or using vi or vim if available.

2.4 Bootstrapping the setup using command line options

The following yorc bootstrap option are available:

• --alien4cloud_download_url Alien4Cloud download URL (defaults to the Alien4Cloud version com-
patible with this Yorc, under https://www.portaildulibre.fr/nexus/repository/opensource-releases/alien4cloud/
alien4cloud-premium-dist/)

• --alien4cloud_password Alien4Cloud password (default, admin)

• --alien4cloud_port Alien4Cloud port (default 8088)

• --alien4cloud_user Alien4Cloud user (default, admin)

• --ansible_extra_package_repository_url URL of package indexes where to find the ansible
package, instead of the default Python Package repository

• --ansible_use_openssh Prefer OpenSSH over Paramiko, python implementation of SSH

• --ansible_version Ansible version (default 2.7.9)

• --config_only Makes the bootstrapping abort right after exporting the inputs

• --consul_download_url Consul download URL (default, Consul version compatible with this Yorc, un-
der https://releases.hashicorp.com/consul/)

• --consul_encrypt_key 16-bytes, Base64 encoded value of an encryption key used to encrypt Consul
network traffic

• --consul_port Consul port (default 8543)

• --credentials_user User Yorc uses to connect to Compute Nodes

• --deployment_name Name of the deployment. If not specified deployment name is based on time.

• --deployment_type Define deployment type: single_node or HA (default, single_node)

• --follow Follow bootstrap deployment steps, logs, or none (default, steps)

• --infrastructure Define the type of infrastructure where to deploy Yorc: google, openstack, aws, host-
spool

• --insecure Insecure mode - no TLS configuration, no Vault to store secrets

• --jdk_download_url Java Development Kit download URL (default, JDK downloaded from https:
//edelivery.oracle.com/otn-pub/java/jdk/)

• --jdk_version Java Development Kit version (default 1.8.0-131-b11)

• --location Name identifying the location where to deploy Yorc

• --resources_zip Path to bootstrap resources zip file (default, zip bundled within Yorc)

• --review Review and update input values before starting the bootstrap

• --terraform_download_url Terraform download URL (default, Terraform version compatible with this
Yorc, under https://releases.hashicorp.com/terraform/)

8 Chapter 2. Bootstrap a full stack installation

https://www.portaildulibre.fr/nexus/repository/opensource-releases/alien4cloud/alien4cloud-premium-dist/
https://www.portaildulibre.fr/nexus/repository/opensource-releases/alien4cloud/alien4cloud-premium-dist/
https://releases.hashicorp.com/consul/
https://edelivery.oracle.com/otn-pub/java/jdk/
https://edelivery.oracle.com/otn-pub/java/jdk/
https://releases.hashicorp.com/terraform/

Yorc Documentation, Release 4.0.1

• --terraform_plugins_download_urls Terraform plugins download URLs (default, Terraform plug-
ins compatible with this Yorc, under https://releases.hashicorp.com/terraform-provider-xxx/)

• --values Path to file containing input values

• --vault_download_url Hashicorp Vault download URL (default “https://releases.hashicorp.com/vault/1.
0.3/vault_1.0.3_linux_amd64.zip”)

• --vault_port Vault port (default 8200)

• --working_directory Working directory where to place deployment files (default, work)

• --yorc_ca_key_file Path to Certificate Authority private key, accessible locally

• --yorc_ca_passphrase Bootstrapped Yorc Home directory (default, /var/yorc)

• --yorc_ca_pem_file Path to PEM-encoded Certificate Authority, accessible locally

• --yorc_data_dir Bootstrapped Yorc Home directory (default, /var/yorc)

• --yorc_download_url Yorc download URL (default, current Yorc release under https://github.com/ystia/
yorc/releases/)

• --yorc_plugin_download_url Yorc plugin download URL

• --yorc_port Yorc HTTP REST API port (default 8800)

• --yorc_private_key_file Path to ssh private key accessible locally

• --yorc_workers_number Number of Yorc workers handling bootstrap deployment tasks (default 30)

The option --resources_zip is an advanced usage option allowing you to change the bootstrap deployment de-
scription. You need to clone first the Yorc source code repository at https://github.com/ystia/yorc, go into to directory
commands, change deployment description files under bootstrap/resources/topology, then zip the con-
tent of bootstrap/resources/ so that this zip will be used to perform the bootstrap deployment.

2.5 Bootstrapping the setup using environment variables

Similarly to the configuration of yorc server through environment variables described at Yorc Server Configura-
tion, the bootstrap configuration can be provided through environment variables following the same naming rules, for
example:

• YORC_ALIEN4CLOUD_PORT allows to define the Alien4Cloud port

Once these environment variables are defined, you can bootstrap the setup running : .. parsed-literal:

./yorc bootstrap [--review]

2.6 Bootstrapping the setup using a configuration file

You can bootstrap the setup using a configuration file running:

./yorc bootstrap --values <path to configuration file> [--review]

Similarly to the configuration of yorc server through a configuration file, described at Yorc Server Configuration,
the bootstrap configuration can be provided in a configuration file following the same naming rules for configuration
variables, for example :

2.5. Bootstrapping the setup using environment variables 9

https://releases.hashicorp.com/terraform-provider-xxx/
https://releases.hashicorp.com/vault/1.0.3/vault_1.0.3_linux_amd64.zip
https://releases.hashicorp.com/vault/1.0.3/vault_1.0.3_linux_amd64.zip
https://github.com/ystia/yorc/releases/
https://github.com/ystia/yorc/releases/
https://github.com/ystia/yorc

Yorc Documentation, Release 4.0.1

alien4cloud:
user: admin
port: 8088

locations:
- name: myLocation
type: openstack
properties:

auth_url: http://10.197.135.201:5000/v2.0

The bootstrap configuration file can be also be used to define Ansible Inventory configuration parameters. This is
needed for example if remote hosts have python3 installed by default and not python, like on Ubuntu 18+.

In this case, you can add in the bootstrap configuration file, a section allowing to configure an Ansible behavioral
inventory parameter that will allow to specify which python interpreter could be used by Ansible on remote hosts, as
described in Ansible Inventory Configuration section.

This would give for example in the bootstrap configuration file:

ansible:
inventory:
"target_hosts:vars":
- ansible_python_interpreter=/usr/bin/python3

See later below a full example of bootstrap configuration file defining such a parameter.

Sections below provide examples of configuration files define a location for each infrastructure type.

2.6.1 Example of a Google Cloud deployment configuration file

yorc:
Path to private key file on local host
used to connect to hosts on the bootstrapped setup
private_key_file: /home/myuser/.ssh/yorc.pem
Path to Certificate Authority private key, accessible locally
If no key ile provided, one will be generated
ca_key_file: /home/myuser//ca-key.pem
Certificate authority private key passphrase
ca_passphrase: changeme
Path to PEM-encoded Certificate Authority, accessible locally
If not provided, a Certifcate Authority will be generated
ca_pem_file: /home/myuser/ca.pem

locations:
- name: firstGoogleLocation
type: google
properties:

Path on local host to file containing Google service account private keys
application_credentials: /home/myuser/gcp/myproject-a90a&bf599ef.json
project: myproject

address:
region: europe-west1

compute:
image_project: centos-cloud
image_family: centos-7
machine_type: n1-standard-2
zone: europe-west1-b
User and public key to define on created compute instance

(continues on next page)

10 Chapter 2. Bootstrap a full stack installation

Yorc Documentation, Release 4.0.1

(continued from previous page)

metadata: "ssh-keys=user1:ssh-ed25519 AAAABCd/gV/C+b3h3r5K011evEELMD72S4..."
tags: a4c

credentials:
User on compute instance created on demand
user: user1

2.6.2 Example of a Google Cloud deployment configuration with Ubuntu 19.04 on-
demand compute

In this example, on-demand compute instances run Ubuntu 19.04 on which python3 is installed by default (and not
python). In this case, a specific Ansible behavioral inventory parameter ansible_python_interpreter must
be defined so that Ansible is able to find this python interpreter on the remote hosts.

yorc:
Path to private key file on local host
used to connect to hosts on the bootstrapped setup
private_key_file: /home/myuser/.ssh/yorc.pem
Path to Certificate Authority private key, accessible locally
If no key ile provided, one will be generated
ca_key_file: /home/myuser//ca-key.pem
Certificate authority private key passphrase
ca_passphrase: changeme
Path to PEM-encoded Certificate Authority, accessible locally
If not provided, a Certifcate Authority will be generated
ca_pem_file: /home/myuser/ca.pem

locations:
- name: firstGoogleLocation
type: google
properties:

Path on local host to file containing Google service account private keys
application_credentials: /home/myuser/gcp/myproject-a90a&bf599ef.json
project: myproject

ansible:
inventory:
Remote host run Ubuntu 19.04, using python3.
Defining here the Ansible behavioral inventory parameter ansible_python_

→˓interpreter
pointing to python3.
This is required or Ansible will attempt to use python on the remote host
which will fail as python is not installed by default.
"target_hosts:vars":
- ansible_python_interpreter=/usr/bin/python3

address:
region: europe-west1

compute:
image_project: ubuntu-os-cloud
image_family: ubuntu-1904
machine_type: n1-standard-2
zone: europe-west1-b
User and public key to define on created compute instance
metadata: "ssh-keys=user1:ssh-ed25519 AAAABCd/gV/C+b3h3r5K011evEELMD72S4..."
tags: a4c

credentials:
User on compute instance created on demand
user: user1

2.6. Bootstrapping the setup using a configuration file 11

Yorc Documentation, Release 4.0.1

2.6.3 Example of an AWS deployment configuration file

yorc:
Path to private key file on local host
used to connect to hosts on the bootstrapped setup
private_key_file: /home/myuser/.ssh/yorc.pem
Path to Certificate Authority private key, accessible locally
If no key ile provided, one will be generated
ca_key_file: /home/myuser//ca-key.pem
Certificate authority private key passphrase
ca_passphrase: changeme
Path to PEM-encoded Certificate Authority, accessible locally
If not provided, a Certifcate Authority will be generated
ca_pem_file: /home/myuser/ca.pem

locations:
- name: firstAWSLocation
type: aws
properties:

region: us-east-2
access_key: ABCDEFABCDEFABCD12DA
secret_key: aabcdxYxABC/a1bcdef

address:
ip_version: 4

compute:
image_id: ami-18f8df7d
instance_type: t2.large
key_name: key-yorc
security_groups: janus-securityGroup
delete_volume_on_termination: true

credentials:
User on compute instance created on demand
user: user1

2.6.4 Example of an OpenStack deployment configuration file

yorc:
Path to private key file on local host
used to connect to hosts on the bootstrapped setup
private_key_file: /home/myuser/.ssh/yorc.pem
Path to Certificate Authority private key, accessible locally
If no key ile provided, one will be generated
ca_key_file: /home/myuser//ca-key.pem
Certificate authority private key passphrase
ca_passphrase: changeme
Path to PEM-encoded Certificate Authority, accessible locally
If not provided, a Certificate Authority will be generated
ca_pem_file: /home/myuser/ca.pem

locations:
- name: firstOpenStackLocation
type: openstack
properties:

auth_url: http://10.1.2.3:5000/v2.0
default_security_groups:
- secgroup1
- secgroup2

(continues on next page)

12 Chapter 2. Bootstrap a full stack installation

Yorc Documentation, Release 4.0.1

(continued from previous page)

password: mypasswd
private_network_name: private-test
region: RegionOne
tenant_name: mytenant
user_name: myuser

address:
floating_network_name: mypublic-net

compute:
image: "7d9bd308-d9c1-4952-123-95b761672499"
flavor: 3
key_pair: yorc

credentials:
User on compute instance created on demand
user: user1

2.6.5 Example of a Hosts Pool deployment configuration file

yorc:
Path to private key file on local host
used to connect to hosts on the bootstrapped setup
private_key_file: /home/myuser/.ssh/yorc.pem
Path to Certificate Authority private key, accessible locally
If no key ile provided, one will be generated
ca_key_file: /home/myuser//ca-key.pem
Certificate authority private key passphrase
ca_passphrase: changeme
Path to PEM-encoded Certificate Authority, accessible locally
If not provided, a Certificate Authority will be generated
ca_pem_file: /home/myuser/ca.pem

compute:
shareable: "false"

hosts:
- name: host1

connection:
user: user1
host: 10.129.1.10
port: 22

labels:
host.cpu_frequency: 3 GHz
host.disk_size: 40 GB
host.mem_size: 4GB
host.num_cpus: "2"
os.architecture: x86_64
os.distribution: centos
os.type: linux
os.version: "7.3.1611"
private_address: "10.0.0.10"
public_address: "10.129.1.10"

- name: host2
connection:
user: user1
host: 10.129.1.11
port: 22

labels:
environment: dev

(continues on next page)

2.6. Bootstrapping the setup using a configuration file 13

Yorc Documentation, Release 4.0.1

(continued from previous page)

host.cpu_frequency: 3 GHz
host.disk_size: 40 GB
host.mem_size: 4GB
host.num_cpus: "2"
os.architecture: x86_64
os.distribution: centos
os.type: linux
os.version: "7.3.1611"
private_address: "10.0.0.11"
public_address: "10.129.1.11"

2.7 Exporting and loading an interactive configuration file

When deploying, the final configuration of the bootstrapping is automatically exported to a file. The name of the file
is the deployment id, which is a timestamp of current year to second. You can create a custom deployment id using
‘’-n” option :

./yorc bootstrap -n a_deploy_name

If you specify an already existing name (an input config file of the same name this already exists), an unique name
will be created, of the form ‘’nameN’‘, where N is an integer, generated incrementally.

You can then load a config file using the “-v” option :

./yorc bootstrap -v path_to_a_file_containing_input_values

Please note than if a config is loaded using this option, it will not be exported again.

If you wish to only export the interactive configuration without doing an actual bootstrap, just set the ‘’–config_only”
flag:

./yorc bootstrap --config_only

it will cause the yorc invocation to terminate straight after the export of interactive config.

14 Chapter 2. Bootstrap a full stack installation

CHAPTER 3

Troubleshooting

By default, debug logs are disabled. To enable them, you can export the environment variable YORC_LOG and set it
to 1 or DEBUG before starting the bootstrap:

export YORC_LOG=1

Once the bootstrap deployment has started, the local yorc server logs are available under <working dir>/yorc.
log, (<working dir> default value being the directory ./work).

To get the bootstrap deployment ID and current status, run :

./yorc deployments list

To follow deployment logs and see these logs from the beginning, run :

./yorc deployments logs <deployment ID> --from-beginning

When a deployment has failed, in addition to logs failure in the logs, you can also get of summary of the deployment
steps statuses to identify quickly which step failed, running :

./yorc deployments info <deployment ID>

If a step failed on a transient error that is now addressed, it is possible to run again manually the failed step, and resume
the deployment running the following commands.

First from the previous command ./yorc deployments info <deployment ID> output, you can find the
task ID that failed.

You can now run this command to get the exact name of the step that failed :

./yorc deployments tasks info --steps <deployment ID> <task ID>

Identify the name of the step that failed.

Let’s say for the example that it is the step TerraformRuntime_create which failed on timeout downloading
the Terraform distribution.

15

Yorc Documentation, Release 4.0.1

You can then go to the directory where you will find the ansible playbook corresponding to this step :

cd <working directory>/deployments/<deployment ID>/ansible/<task ID>/TerraformRuntime/
→˓standard.create/

And from this directory, run again this step through this command:

ansible-playbook -i hosts run.ansible.yml -v

If this manual execution was successful, you can mark the corresponding step as fixed in the deployment, running :

./yorc deployments tasks fix <deployment ID> <task ID> TerraformRuntime

You can now resume the bootstrap deployment running :

./yorc deployments tasks resume <deployment ID>

16 Chapter 3. Troubleshooting

CHAPTER 4

Yorc Server Configuration

Yorc has various configuration options that could be specified either by command-line flags, configuration file or
environment variables.

If an option is specified several times using flags, environment and config file, command-line flag will have the prece-
dence then the environment variable and finally the value defined in the configuration file.

4.1 Globals Command-line options

• --ansible_use_openssh: Prefer OpenSSH over Paramiko a Python implementation of SSH (the default)
to provision remote hosts. OpenSSH have several optimization like reusing connections that should improve
preformance but may lead to issues on older systems.

• --ansible_debug: Prints massive debug information from Ansible especially about connections

• --ansible_connection_retries: Number of retries in case of Ansible SSH connection failure.

• --ansible_cache_facts: If set to true, caches Ansible facts (values fetched on remote hosts about net-
work/hardware/OS/virtualization configuration) so that these facts are not recomputed each time a new operation
is a run for a given deployment (false by default: no caching).

• --ansible_archive_artifacts: If set to true, archives operation bash/python scripts locally, copies
this archive and unarchives it on remote hosts (requires tar to be installed on remote hosts), to avoid multiple
time consuming remote copy operations of individual scripts (false by default: no archive).

• --ansible_job_monitoring_time_interval: Default duration for monitoring time interval for jobs
handled by Ansible (defaults to 15s).

• --ansible_keep_generated_recipes: If set to true, generated Ansible recipes on Yorc server are not
deleted. (false by default: generated recipes are deleted).

• --operation_remote_base_dir: Specify an alternative working directory for Ansible on provisioned
Compute.

• --config or -c: Specify an alternative configuration file. By default Yorc will look for a file named con-
fig.yorc.json in /etc/yorc directory then if not found in the current directory.

17

Yorc Documentation, Release 4.0.1

• --consul_address: Specify the address (using the format host:port) of Consul. Consul default is used if
not provided.

• --consul_token: Specify the security token to use with Consul. No security token used by default.

• --consul_datacenter: Specify the Consul’s datacenter to use. Consul default (dc1) is used by default.

• --consul_key_file: Specify the Consul client’s key to use when commuicating over TLS.

• --consul_cert_file: Specify the Consul client’s certificate to use when commuicating over TLS.

• --consul_ca_cert: Specify the CA used to sign Consul certificates.

• --consul_ca_path: Specify the path to the CA used to sign Consul certificates

• --consul_ssl: If set to true, enable SSL (false by default).

• --consul_ssl_verify: If set to false, disable Consul certificate checking (true by default is ssl enabled).

• --consul_tls_handshake_timeout: Maximum duration to wait for a TLS handshake with Consul, the
default is 50s.

• --terraform_plugins_dir: Specify the directory where to find Terraform pre-installed providers plu-
gins. If not specified, required plugins will be downloaded during deployment. See https://www.terraform.io/
guides/running-terraform-in-automation.html#pre-installed-plugins for more information.

• --terraform_aws_plugin_version_constraint: Specify the Terraform AWS plugin version con-
straint. Default one compatible with our source code is "~> 1.36". If you choose another, it’s at your own
risk. See https://www.terraform.io/docs/configuration/providers.html#provider-versions for more information.

• --terraform_consul_plugin_version_constraint: Specify the Terraform Consul plugin ver-
sion constraint. Default one compatible with our source code is "~> 2.1". If you choose another, it’s at your
own risk. See https://www.terraform.io/docs/configuration/providers.html#provider-versions for more informa-
tion.

• --terraform_google_plugin_version_constraint: Specify the Terraform Google plugin ver-
sion constraint. Default one compatible with our source code is "~> 1.18". If you choose another, it’s
at your own risk. See https://www.terraform.io/docs/configuration/providers.html#provider-versions for more
information.

• --terraform_openstack_plugin_version_constraint: Specify the Terraform OpenStack plu-
gin version constraint. Default one compatible with our source code is "~> 1.9". If you choose another, it’s
at your own risk. See https://www.terraform.io/docs/configuration/providers.html#provider-versions for more
information.

• --terraform_keep_generated_files: If set to true, generated Terraform infrastructures files on Yorc
server are not deleted. (false by default: generated files are deleted).

• --consul_publisher_max_routines: Maximum number of parallelism used to store key/values in
Consul. If you increase the default value you may need to tweak the ulimit max open files. If set to 0 or less the
default value (500) will be used.

• --graceful_shutdown_timeout: Timeout to wait for a graceful shutdown of the Yorc server. After this
delay the server immediately exits. The default is 5m.

• --wf_step_graceful_termination_timeout: Timeout to wait for a graceful termination of a work-
flow step during concurrent workflow step failure. After this delay the step is set on error. The default is 2m.

• --purged_deployments_eviction_timeout: When a deployment is purged an event is kept to let a
chance to external systems to detect it via the events API, this timeout controls the retention time of such events.
The default is 30m.

• --http_address: Restrict the listening interface for the Yorc HTTP REST API. By default Yorc listens on
all available interfaces

18 Chapter 4. Yorc Server Configuration

https://www.terraform.io/guides/running-terraform-in-automation.html#pre-installed-plugins
https://www.terraform.io/guides/running-terraform-in-automation.html#pre-installed-plugins
https://www.terraform.io/docs/configuration/providers.html#provider-versions
https://www.terraform.io/docs/configuration/providers.html#provider-versions
https://www.terraform.io/docs/configuration/providers.html#provider-versions
https://www.terraform.io/docs/configuration/providers.html#provider-versions

Yorc Documentation, Release 4.0.1

• --http_port: Port number for the Yorc HTTP REST API. If omitted or set to ‘0’ then the default port
number is used, any positive integer will be used as it, and finally any negative value will let use a random port.

• --keep_operation_remote_path: If set to true, do not delete temporary artifacts on provisioned Com-
pute at the end of deployment (false by default for deployment temporary artifacts cleanup).

• --key_file: File path to a PEM-encoded private key. The key is used to enable SSL for the Yorc HTTP
REST API. This must be provided along with cert_file. If one of key_file or cert_file is not provided then SSL
is disabled.

• --cert_file: File path to a PEM-encoded certificate. The certificate is used to enable SSL for the Yorc
HTTP REST API. This must be provided along with key_file. If one of key_file or cert_file is not provided then
SSL is disabled.

• --ca_file: If set to true, enable TLS certificate checking. Must be provided with cert_file ; key_file and
ca_file. Disabled by default.

• --ssl_verify: If set to true, enable TLS certificate checking for clients of the Yorc’s API. Must be provided
with cert_file ; key_file and ca_file. Disabled by default.

• --plugins_directory: The name of the plugins directory of the Yorc server. The default is to use a
directory named plugins in the current directory.

• --locations_file_path: File path to locations configuration. This configuration is taken in account for
the first time the server starts.

• --resources_prefix: Specify a prefix that will be used for names when creating resources such as Com-
pute instances or volumes. Defaults to yorc-.

• --tasks_dispatcher_long_polling_wait_time: Wait time (Golang duration format) when long
polling for executions tasks to dispatch to workers. If not set the default value of 1m will be used.

• --tasks_dispatcher_lock_wait_time: Wait time (Golang duration format) for acquiring a lock for
an execution task. If not set the default value of 50ms will be used.

• --workers_number: Yorc instances use a pool of workers to handle deployment tasks. This option defines
the size of this pool. If not set the default value of 30 will be used.

• --working_directory or -w: Specify an alternative working directory for Yorc. The default is to use a
directory named work in the current directory.

• --server_id: Specify the server ID used to identify the server node in a cluster. The default is the hostname.

• --disable_ssh_agent: Allow disabling ssh-agent use for SSH authentication on provisioned computes.
Default is false. If true, compute credentials must provide a path to a private key file instead of key content.

• --concurrency_limit_for_upgrades: Limit of concurrency used in Upgrade processes. If not set the
default value of 1000 will be used.

• --ssh_connection_timeout: Timeout to establish SSH connection from Yorc SSH client, especially
used for Slurm and HostsPool locations. If not set the default value of 10 s will be used.

4.2 Configuration files

Configuration files are either JSON or YAML formatted as a single object containing the following configuration
options. By default Yorc will look for a file named config.yorc.json in /etc/yorc directory then if not found in the
current directory. The –config command line flag allows to specify an alternative configuration file.

Below is an example of configuration file.

4.2. Configuration files 19

Yorc Documentation, Release 4.0.1

{
"resources_prefix": "yorc1-",
"locations_file_path": "path-to-locations-yaml-or-json-config"

}

Below is an example of configuration file with TLS enabled.

{
"resources_prefix": "yorc1-",
"key_file": "/etc/pki/tls/private/yorc.key",
"cert_file": "/etc/pki/tls/certs/yorc.crt",
"locations_file_path": "path-to-locations-yaml-or-json-config"

}

• server_graceful_shutdown_timeout: Equivalent to –graceful_shutdown_timeout command-line
flag.

• wf_step_graceful_termination_timeout: Equivalent to –wf_step_graceful_termination_timeout
command-line flag.

• purged_deployments_eviction_timeout: Equivalent to –purged_deployments_eviction_timeout
command-line flag.

• http_address: Equivalent to –http_address command-line flag.

• http_port: Equivalent to –http_port command-line flag.

• key_file: Equivalent to –key_file command-line flag.

• cert_file: Equivalent to –cert_file command-line flag.

• ssl_verify: Equivalent to –ssl_verify command-line flag.

• ca_file: Equivalent to –ca_file command-line flag.

• plugins_directory: Equivalent to –plugins_directory command-line flag.

• resources_prefix: Equivalent to –resources_prefix command-line flag.

• locations_file_path: Equivalent to –locations_file_path command-line flag.

• workers_number: Equivalent to –workers_number command-line flag.

• working_directory: Equivalent to –working_directory command-line flag.

• server_id: Equivalent to –server_id command-line flag.

• disable_ssh_agent: Equivalent to –disable_ssh_agent command-line flag.

• concurrency_limit_for_upgrades: Equivalent to –concurrency_limit_for_upgrades command-line
flag.

• ssh_connection_timeout: Equivalent to –ssh_connection_timeout command-line flag.

4.2.1 Ansible configuration

Below is an example of configuration file with Ansible configuration options.

{
"resources_prefix": "yorc1-",
"locations_file_path": "path-to-locations-yaml-or-json-config",
"ansible": {

(continues on next page)

20 Chapter 4. Yorc Server Configuration

Yorc Documentation, Release 4.0.1

(continued from previous page)

"use_openssh": true,
"connection_retries": 3,
"hosted_operations": {
"unsandboxed_operations_allowed": false,
"default_sandbox": {

"image": "jfloff/alpine-python:2.7-slim",
"entrypoint": ["python", "-c"],
"command": ["import time;time.sleep(31536000);"]

}
},
"config": {

"defaults": {
"display_skipped_hosts": "False",
"special_context_filesystems": "nfs,vboxsf,fuse,ramfs,myspecialfs",
"timeout": "60"

}
},
"inventory":{
"target_hosts:vars": ["ansible_python_interpreter=/usr/bin/python3"]

}
}

}

All available configuration options for Ansible are:

• use_openssh: Equivalent to –ansible_use_openssh command-line flag.

• debug: Equivalent to –ansible_debug command-line flag.

• connection_retries: Equivalent to –ansible_connection_retries command-line flag.

• cache_facts: Equivalent to –ansible_cache_facts command-line flag.

• archive_artifacts: Equivalent to –ansible_archive_artifacts command-line flag.

• job_monitoring_time_interval: Equivalent to –ansible_job_monitoring_time_interval command-
line flag.

• operation_remote_base_dir: Equivalent to –operation_remote_base_dir command-line flag.

• keep_operation_remote_path: Equivalent to –keep_operation_remote_path command-line flag.

• keep_generated_recipes: Equivalent to –ansible_keep_generated_recipes command-line flag.

• hosted_operations: This is a complex structure that allow to define the behavior of a Yorc server when
it executes an hosted operation. For more information about hosted operation please see The hosted operations
paragraph in the TOSCA support section. This structure contains the following configuration options:

– unsandboxed_operations_allowed: This option control if operations can be executed directly
on the system that hosts Yorc if no default sandbox is defined. This is not permitted by default.

– default_sandbox: This complex structure allows to define the default docker container to use to sand-
box orchestrator-hosted operations. Bellow configuration options entrypoint and command should be
carefully set to run the container and make it sleep until operations are executed on it. Defaults options
will run a python inline script that sleeps for 1 year.

* image: This is the docker image identifier (in the docker format [repository/]name[:tag])
is option is required.

* entrypoint: This allows to override the default image entrypoint. If both entrypoint and
command are empty the default value for entrypoint is ["python", "-c"].

4.2. Configuration files 21

Yorc Documentation, Release 4.0.1

* command: This allows to run a command within the container. If both entrypoint and command
are empty the default value for command is ["import time;time.sleep(31536000);"].

* env: An optional list environment variables to set when creating the container. The format of each
variable is var_name=value.

* config and inventory are complex structure allowing to configure Ansible behavior, these op-
tions are described in more details in next section.

Ansible config option

config is a complex structure allowing to define Ansible configuration settings if you need a specific Ansible Con-
figuration.

You should first provide the Ansible Configuration section (for example defaults, ssh_connection. . .).

You should then provide the list of parameters within this section, ie. what Ansible documentation describes as the Ini
key within the Ini Section. Each parameter value must be provided here as a string : for a boolean parameter,
you would provide the string False or True as expected in Ansible Confiugration. For example, it would give in
Yaml:

ansible:
config:
defaults:

display_skipped_hosts: "False"
special_context_filesystems: "nfs,vboxsf,fuse,ramfs,myspecialfs"
timeout: "60"

By default, the Orchestrator will define these Ansible Configuration settings :

• host_key_checking: "False", to avoid host key checking by the underlying tools Ansible uses to
connect to the host

• timeout: "30", to set the connection timeout to 30 seconds

• stdout_callback: "yaml", to display ansible output in yaml format

• nocows: "1", to disable cowsay messages that can cause parsing issues in the Orchestrator

And when ansible fact caching is enabled, the Orchestrator adds these settings :

• gathering: "smart", to set Ansible fact gathering to smart: each new host that has no facts discovered
will be scanned

• fact_caching: "jsonfile", to use a json file-based cache plugin

Warning: Be careful when overriding these settings defined by default by the Orchestrator, as it might lead to
unpredictable results.

Ansible inventory option

inventory is a structure allowing to configure Ansible inventory settings if you need to define variables for hosts
or groups.

You should first provide the Ansible Inventory group name. You should then provide the list of parameters to define
for this group, which can be any parameter specific to your ansible playbooks, or behavioral inventory parameters
describing how Ansible interacts with remote hosts.

22 Chapter 4. Yorc Server Configuration

https://docs.ansible.com/ansible/latest/reference_appendices/config.html
https://docs.ansible.com/ansible/latest/reference_appendices/config.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#list-of-behavioral-inventory-parameters

Yorc Documentation, Release 4.0.1

For example, for Ansible to use python3 on remote hosts, you must define the Ansible behavioral inventory parameter
ansible_python_interpreter in the Ansible inventory Yorc configuration, like below in Yaml:

ansible:
inventory:
"target_hosts:vars":
- ansible_python_interpreter=/usr/bin/python3

By default, the Orchestrator will define :

• an inventory group target_hosts containing the list of remote hosts, and its associated variable group
target_hosts:vars configuring by default this behavioral parameter:

– ansible_ssh_common_args="-o ConnectionAttempts=20"

• an inventory group hosted_operations and its associated variable group hosted_operations:vars
for operations that are executed on the orchestrator host, configuring by default this behavioral parameter:

– ansible_python_interpreter=/usr/bin/env python

Warning: Settings defined by the user take precedence over settings defined by the Orchestrator. Be careful when
overriding these settings defined by default by the Orchestrator, as it might lead to unpredictable results.

Ansible performance considerations

As described in TOSCA Supported Operations implementations, Yorc supports these builtin implementations for
operations to execute on remote hosts :

• Bash scripts

• Python scripts

• Ansible Playbooks

It is recommended to implement operations as Ansible Playbooks to get the best execution performance.

When operations are not implemented using Ansible playbooks, see the Performance section on TOSCA Operations
to improve the performance of scripts execution on remote hosts.

4.2.2 Consul configuration

Below is an example of configuration file with Consul configuration options.

{
"resources_prefix": "yorc1-",
"locations_file_path": "path-to-locations-yaml-or-json-config",
"consul": {
"address": "http://consul-host:8500",
"datacenter": "dc1",
"publisher_max_routines": 500

}
}

All available configuration options for Consul are:

• address: Equivalent to –consul_address command-line flag.

• token: Equivalent to –consul_token command-line flag.

4.2. Configuration files 23

Yorc Documentation, Release 4.0.1

• datacenter: Equivalent to –consul_datacenter command-line flag.

• key_file: Equivalent to –consul_key_file command-line flag.

• cert_file: Equivalent to –consul_cert_file command-line flag.

• ca_cert: Equivalent to –consul_ca_cert command-line flag.

• ca_path: Equivalent to –consul_ca_path command-line flag.

• ssl: Equivalent to –consul_ssl command-line flag.

• ssl_verify: Equivalent to –consul_ssl_verify command-line flag.

• tls_handshake_timeout: Equivalent to –consul_tls_handshake_timeout command-line flag.

• publisher_max_routines: Equivalent to –consul_publisher_max_routines command-line flag.

4.2.3 Terraform configuration

Below is an example of configuration file with Terraform configuration options.

{
"resources_prefix": "yorc1-",
"locations_file_path": "path-to-locations-yaml-or-json-config",
"terraform": {
"plugins_dir": "home/yorc/terraform_plugins_directory",

}
}

All available configuration options for Terraform are:

• plugins_dir: Equivalent to –terraform_plugins_dir command-line flag.

• aws_plugin_version_constraint: Equivalent to –terraform_aws_plugin_version_constraint
command-line flag.

• consul_plugin_version_constraint: Equivalent to –terraform_consul_plugin_version_constraint
command-line flag.

• google_plugin_version_constraint: Equivalent to –terraform_google_plugin_version_constraint
command-line flag.

• openstack_plugin_version_constraint: Equivalent to –ter-
raform_openstack_plugin_version_constraint command-line flag.

• keep_generated_files: Equivalent to –terraform_keep_generated_files command-line flag.

4.2.4 Telemetry configuration

Telemetry configuration can only be done via the configuration file. By default telemetry data are only stored in
memory. See Yorc Telemetry for more information about telemetry.

Below is an example of configuration file with telemetry metrics forwarded to a Statsd instance and with a
Prometheus HTTP endpoint exposed.

{
"resources_prefix": "yorc1-",
"locations_file_path": "path-to-locations-yaml-or-json-config",
"telemetry": {

(continues on next page)

24 Chapter 4. Yorc Server Configuration

Yorc Documentation, Release 4.0.1

(continued from previous page)

"statsd_address": "127.0.0.1:8125",
"expose_prometheus_endpoint": true

}
}

All available configuration options for telemetry are:

• service_name: Metrics keys prefix, defaults to yorc.

• disable_hostname: Specifies if gauge values should not be prefixed with the local hostname. Defaults to
false.

• disable_go_runtime_metrics: Specifies Go runtime metrics (goroutines, memory, . . .) should not be
published. Defaults to false.

• statsd_address: Specify the address (in form <address>:<port>) of a statsd server to forward metrics data
to.

• statsite_address: Specify the address (in form <address>:<port>) of a statsite server to forward metrics
data to.

• expose_prometheus_endpoint: Specify if an HTTP Prometheus endpoint should be exposed allowing
Prometheus to scrape metrics.

4.2.5 Tasks/Workers configuration

Below is an example of configuration file with Tasks configuration options.

resources_prefix: "yorc1-"
tasks:

dispatcher:
long_polling_wait_time: "1m"
lock_wait_time: "50ms"

• long_polling_wait_time: Equivalent to –tasks_dispatcher_long_polling_wait_time command-line flag.

• lock_wait_time: Equivalent to –tasks_dispatcher_lock_wait_time command-line flag.

4.3 Environment variables

• YORC_ANSIBLE_USE_OPENSSH: Equivalent to –ansible_use_openssh command-line flag.

• YORC_ANSIBLE_DEBUG: Equivalent to –ansible_debug command-line flag.

• YORC_ANSIBLE_CONNECTION_RETRIES: Equivalent to –ansible_connection_retries command-line flag.

• YORC_ANSIBLE_CACHE_FACTS: Equivalent to –ansible_cache_facts command-line flag.

• YORC_ANSIBLE_JOB_MONITORING_TIME_INTERVAL: Equivalent to –ansi-
ble_job_monitoring_time_interval command-line flag.

• YORC_ANSIBLE_KEEP_GENERATED_RECIPES: Equivalent to –ansible_keep_generated_recipes
command-line flag.

• YORC_OPERATION_REMOTE_BASE_DIR: Equivalent to –operation_remote_base_dir command-line flag.

• YORC_CONSUL_ADDRESS: Equivalent to –consul_address command-line flag.

• YORC_CONSUL_TOKEN: Equivalent to –consul_token command-line flag.

4.3. Environment variables 25

Yorc Documentation, Release 4.0.1

• YORC_CONSUL_DATACENTER: Equivalent to –consul_datacenter command-line flag.

• YORC_CONSUL_KEY_FILE: Equivalent to –consul_key_file command-line flag.

• YORC_CONSUL_CERT_FILE: Equivalent to –consul_cert_file command-line flag.

• YORC_CONSUL_CA_CERT: Equivalent to –consul_ca_cert command-line flag.

• YORC_CONSUL_CA_PATH: Equivalent to –consul_ca_path command-line flag.

• YORC_CONSUL_SSL: Equivalent to –consul_ssl command-line flag.

• YORC_CONSUL_SSL_VERIFY: Equivalent to –consul_ssl_verify command-line flag.

• YORC_CONSUL_TLS_HANDSHAKE_TIMEOUT: Equivalent to –consul_tls_handshake_timeout command-
line flag.

• YORC_CONSUL_STORE_TXN_TIMEOUT: Allows to activate the feature that packs ConsulStore operations
into transactions. If set to a valid Go duration, operations are packed into transactions up to 64 ops. This
timeout represent the time to wait for new operations before sending an incomplete (less than 64 ops) transaction
to Consul.

• YORC_CONSUL_PUBLISHER_MAX_ROUTINES: Equivalent to –consul_publisher_max_routines command-
line flag.

• YORC_SERVER_GRACEFUL_SHUTDOWN_TIMEOUT: Equivalent to –graceful_shutdown_timeout command-
line flag.

• YORC_WF_STEP_GRACEFUL_TERMINATION_TIMEOUT: Equivalent to
–wf_step_graceful_termination_timeout command-line flag.

• YORC_PURGED_DEPLOYMENTS_EVICTION_TIMEOUT: Equivalent to –purged_deployments_eviction_timeout
command-line flag.

• YORC_HTTP_ADDRESS: Equivalent to –http_address command-line flag.

• YORC_HTTP_PORT: Equivalent to –http_port command-line flag.

• YORC_KEEP_OPERATION_REMOTE_PATH: Equivalent to –keep_operation_remote_path command-line
flag.

• YORC_KEY_FILE: Equivalent to –key_file command-line flag.

• YORC_CERT_FILE: Equivalent to –cert_file command-line flag.

• YORC_SSL_VERIFY: Equivalent to –ssl_verify command-line flag.

• YORC_CA_FILE: Equivalent to –ca_file command-line flag.

• YORC_PLUGINS_DIRECTORY: Equivalent to –plugins_directory command-line flag.

• YORC_RESOURCES_PREFIX: Equivalent to –resources_prefix command-line flag.

• YORC_LOCATIONS_FILE_PATH: Equivalent to –locations_file_path command-line flag.

• YORC_TASKS_DISPATCHER_LONG_POLLING_WAIT_TIME: Equivalent to
–tasks_dispatcher_long_polling_wait_time command-line flag.

• YORC_TASKS_DISPATCHER_LOCK_WAIT_TIME: Equivalent to –tasks_dispatcher_lock_wait_time
command-line flag.

• YORC_WORKERS_NUMBER: Equivalent to –workers_number command-line flag.

• YORC_WORKING_DIRECTORY: Equivalent to –working_directory command-line flag.

• YORC_SERVER_ID: Equivalent to –server_id command-line flag.

• YORC_DISABLE_SSH_AGENT: Equivalent to –disable_ssh_agent command-line flag.

26 Chapter 4. Yorc Server Configuration

Yorc Documentation, Release 4.0.1

• YORC_CONCURRENCY_LIMIT_FOR_UPGRADES: Equivalent to –concurrency_limit_for_upgrades
command-line flag.

• YORC_SSH_CONNECTION_TIMEOUT: Equivalent to –ssh_connection_timeout command-line flag.

• YORC_LOG: If set to 1 or DEBUG, enables debug logging for Yorc.

• YORC_TERRAFORM_PLUGINS_DIR: Equivalent to –terraform_plugins_dir command-line flag.

• YORC_TERRAFORM_AWS_PLUGIN_VERSION_CONSTRAINT: Equivalent to –ter-
raform_aws_plugin_version_constraint command-line flag.

• YORC_TERRAFORM_CONSUL_PLUGIN_VERSION_CONSTRAINT: Equivalent to –ter-
raform_consul_plugin_version_constraint command-line flag.

• YORC_TERRAFORM_GOOGLE_PLUGIN_VERSION_CONSTRAINT: Equivalent to –ter-
raform_google_plugin_version_constraint command-line flag.

• YORC_TERRAFORM_OPENSTACK_PLUGIN_VERSION_CONSTRAINT: Equivalent to –ter-
raform_openstack_plugin_version_constraint command-line flag.

• YORC_TERRAFORM_KEEP_GENERATED_FILES: Equivalent to –terraform_keep_generated_files
command-line flag.

4.4 Locations configuration

A location allows Yorc to connect to an infrastructure. A location is identified uniquely by its name property. Its
type property Specifies the infrastructure related to this location. Yorc can handle multiple locations of the same
infrastructure.

Its properties property contains a map with all required information for the infrastructure connection.

The –locations_file_path option allows user to define the specific locations configuration file path. This configuration
is taken in account for the first time the server starts and allows to populate locations for the Yorc cluster. In near
future, a REST API will let users add, remove or update existing locations configured in Yorc.

This file can be written either in JSON or YAML format. Here is a JSON example of locations configuration:

{
"locations": [

{ "name": "myOpenstackLocation1",
"type": "openstack",
"properties": {

"auth_url": "http://openstack:5000/v2.0",
"tenant_name": "Tname",
"tenant_id": "use_tid_or_tname",
"user_name": "{{with (secret \"/secret/yorc/mysecret\").Raw}}{{.Data.value}}{

→˓{end}}",
"password": "{{secret \"/secret/yorc/mysecret\" \"data=value\" | print}}",
"region": "RegionOne",
"private_network_name": "private-test",
"public_network_name": "not_supported",
"os_default_security_groups": ["default", "lax"]

}
},
{ "name": "myGoogleLocation1",
"type": "google",
"properties": {

"application_credentials": "creds.json",

(continues on next page)

4.4. Locations configuration 27

Yorc Documentation, Release 4.0.1

(continued from previous page)

"project": "my-project-ref"
}

},
....

4.5 Builtin locations types configuration

Here we have principal infrastructure configurations retrieved as location properties for a specified type.

4.5.1 OpenStack

OpenStack location type is openstack in lower case.

28 Chapter 4. Yorc Server Configuration

Yorc Documentation, Release 4.0.1

Property Name Description Data
Type

Required Default

auth_url Specify the authentication url for
OpenStack (should be the Keystone
endpoint ie: http://your-openstack:
5000/v2.0).

string yes

tenant_id Specify the OpenStack tenant id to
use.

string Either this or
tenant_name
should be pro-
vided.

tenant_name Specify the OpenStack tenant name
to use.

string Either this or
tenant_id
should be pro-
vided.

user_domain_name Specify the domain name where the
user is located (Identity v3 only).

string yes (if use Iden-
tity v3)

project_id Specify the ID of the project to lo-
gin with (Identity v3 only).

string Either this or
project_name
should be pro-
vided.

project_name Specify the name of the project to
login with (Identity v3 only).

string Either this or
project_id
should be pro-
vided.

user_name Specify the OpenStack user name
to use.

string yes

password Specify the OpenStack password to
use.

string yes

region Specify the OpenStack region to
use

string no RegionOne

private_network_name Specify the name of private net-
work to use as primary admin-
stration network between Yorc and
Compute instances. It should be a
private network accessible by this
instance of Yorc.

string Required to use
the PRIVATE
keyword for
TOSCA admin
networks

provisioning_over_fip_allowed This allows to perform the provi-
sioning of a Compute over the as-
sociated floating IP if it exists. This
is useful when Yorc is not deployed
on the same private network than
the provisioned Compute.

boolean no false

default_security_groups Default security groups to be used
when creating a Compute instance.
It should be a comma-separated list
of security group names

list of
strings

no

insecure Trust self-signed SSL certificates boolean no false
cacert_file Specify a custom CA certificate

when communicating over SSL.
You can specify either a path to the
file or the contents of the certificate

string no

cert Specify client certificate file for
SSL client authentication. You can
specify either a path to the file or
the contents of the certificate

string no

key Specify client private key file for
SSL client authentication. You can
specify either a path to the file or
the contents of the key

string no4.5. Builtin locations types configuration 29

http://your-openstack:5000/v2.0
http://your-openstack:5000/v2.0

Yorc Documentation, Release 4.0.1

4.5.2 Kubernetes

Kubernetes location type is kubernetes in lower case.

Property Name Description Data
Type

Re-
quired

De-
fault

kubeconfig Path or content of Kubernetes cluster
configuration file*

string no

application_credentials Path or content of file containing
credentials**

string no

master_url URL of the HTTP API of Kubernetes is
exposed. Format:
https://<host>:<port>

string no

ca_file Path to a trusted root certificates for server string no
cert_file Path to the TLS client certificate used for

authentication
string no

key_file Path to the TLS client key used for
authentication

string no

insecure Server should be accessed without verifying
the TLS certificate (testing only)

boolean no

job_monitoring_time_interval Default duration for job monitoring time
interval

string no 5s

• kubeconfig is the path (accessible to Yorc server) or the content of a Kubernetes cluster configuration file.
When kubeconfig is defined, other infrastructure configuration properties (master_url, keys or certifi-
cates) don’t have to be defined here.

If neither kubeconfig nor master_url is specified, the Orchestrator will consider it is running within a
Kubernetes Cluster and will attempt to authenticate inside this cluster.

• application_credentials is the path (accessible to Yorc server) or the content of a file containing
Google service account private keys in JSON format. This file can be downloaded from the Google Cloud
Console at Google Cloud service account file. It is needed to authenticate against Google Cloud when the
kubeconfig property above refers to a Kubernetes Cluster created on Google Kubernetes Engine, and the
orchestrator is running on a host where gcloud is not installed.

4.5.3 Google Cloud Platform

Google Cloud Platform location type is google in lower case.

Property Name Description Data
Type

Re-
quired

Default

project ID of the project to apply any
resources to

string yes

application_credentialsPath of file containing creden-
tials*

string no Google Application Default
Credentials

credentials Content of file containing cre-
dentials

string no Google Application Default
Credentials

region The region to operate under string no

application_credentials is the path (accessible to Yorc server) of a file containing service account private
keys in JSON format. This file can be downloaded from the Google Cloud Console at Google Cloud service account
file.

30 Chapter 4. Yorc Server Configuration

https://console.cloud.google.com/apis/credentials/serviceaccountkey
https://cloud.google.com/sdk/gcloud/
https://console.cloud.google.com/apis/credentials/serviceaccountkey
https://console.cloud.google.com/apis/credentials/serviceaccountkey

Yorc Documentation, Release 4.0.1

If no file path is specified in application_credentials and no file content is specified in credentials, the
orchestrator will fall back to using the Google Application Default Credentials if any.

4.5.4 AWS

AWS location type is aws in lower case.

Property Name Description Data Type Required Default
access_key Specify the AWS access key credential. string yes
secret_key Specify the AWS secret key credential. string yes
region Specify the AWS region to use. string yes

4.5.5 Slurm

Slurm location type is slurm in lower case.

Property Name Description Data
Type

Required De-
fault

user_name SSH Username to be used to connect
to the Slurm Client’s node

string yes (see below for alterna-
tives)

password SSH Password to be used to connect
to the Slurm Client’s node

string Either this or
private_key should
be provided

private_key SSH Private key to be used to connect
to the Slurm Client’s node

string Either this or password
should be provided

url IP address of the Slurm Client’s node string yes
port SSH Port to be used to connect to the

Slurm Client’s node
string yes

default_job_name Default name for the job allocation. string no
job_monitoring_time_intervalDefault duration for job monitoring

time interval
string no 5s

enforce_accounting If true, account properties are manda-
tory for jobs and computes

boolean no false

keep_job_remote_artifactsIf true, job artifacts are not deleted at
the end of the job.

boolean no false

An alternative way to specify user credentials for SSH connection to the Slurm Client’s node (user_name, password or
private_key), is to provide them as application properties. In this case, Yorc gives priority to the application provided
properties. Moreover, if all the applications provide their own user credentials, the configuration properties user_name,
password and private_key, can be omitted. See Working with jobs for more information.

4.6 Storage configuration

Different artifacts (topologies, logs, events, tasks. . .) are stored by Yorc during an application deployment.

Previously, everything was stored in Consul KV. Starting with version 4.0.0, we choosed to refactor the way Yorc
stores data mainly for performance reasons, and also to make it more flexible. Yorc can now store the different kind
of artifacts in different stores configured in a new section of the configuration file called storage.

If defined, the storage entry may specify the following properties:

4.6. Storage configuration 31

https://cloud.google.com/docs/authentication/production
https://yorc-a4c-plugin.readthedocs.io/en/latest/jobs.html

Yorc Documentation, Release 4.0.1

• the stores property allows to customize storage in a different way than the default one.

• the default_properties allows to change properties settings for the default fileCache store.

• The reset property allows to redefine the stores or to change properties for default stores when Yorc
re-starts. If no set to true, the existing storage is used.

Property Name Description Data
Type

Re-
quired

Default

reset See Storage reset note boolean no False
default_propertiesProperties for default fileCache store. See File

cache properties
map no

stores Stores configuration array no See Store
types

So now, users can configure different store types for storing the different kind of artifacts, and using different stores
implementations.

Currently Yorc supports 3 store types:

• Deployment

• Log

• Event

Yorc supports 3 store implementations:

• consul

• fileCache

• cipherFileCache

By default, Log and Event store types use consul implementation, and Deployment store uses fileCache.

If these default settings correspond to your needs, the Yorc configuration file does not need to have a storage entry.

If you want to change properties for the default fileCache store for Deployment, you have to set the new values
in the default_properties map. The cache_num_counters and cache_max_cost properties can be
used to determine the cache size in function of the expected number of items. The default values are defined for about
100 deployments if we approximate a cache size of 100 K and 100 items for one single deployment. See Default cache
size for file storage is too large.

Pay attention that the cache size must be defined in function of the Yorc host memory resources and a too large cache
size can affect performances.

Here is a JSON example of updating default properties for cache used in fileCache store for Deployment:

{
"storage": {
"reset": true,
"default_properties":
{
"cache_num_counters": 1e7,
"cache_max_cost": 1e9

}
}

}

The same sample in YAML

32 Chapter 4. Yorc Server Configuration

https://github.com/ystia/yorc/issues/612
https://github.com/ystia/yorc/issues/612

Yorc Documentation, Release 4.0.1

storage:
reset: true
default_properties:
cache_num_counters: 1e7
cache_max_cost: 1e9

A store configuration is defined with:

Property Name Description Data
Type

Re-
quired

De-
fault

name unique store ID string no gener-
ated

migrate_data_from_consulLog and Event data migration from consul. See
note below.

bool no false

implementation Store implementation. See Store implementa-
tions below.

string yes

types Store types handled by this instance. See Store
types below.

array yes

properties Specific store implementation properties. map no

migrate_data_from_consul allows to migrate data from consul to another store implementation. This is
useful when a new store is configured (different from consul. . .) for logs or events.

4.6.1 Store types

Currently 3 different store types are supported by Yorc:

Deployment

This store type contains data representing the Tosca topologies types (data, nodes, policies, artifacts, relationships,
capabilities) and templates (nodes, polocies, repositories, imports, workflows).

Data in this store is written once when a topology is parsed, then read many times during application lifecycle.
fileCache is the default implementation for this store type.

Log

Store that contains the applicative logs, also present in Alien4Cloud logs. consul is the default implementation for
this store type.

If you face some Consul memory usage issues, you can choose fileCache or cipherFileCache as logs may
contains private information.

Event

Store that contains the applicative events, also present in Alien4Cloud events. consul is the default implementation
for this store type.

4.6.2 Store implementations

Currently Yorc provide 3 implementations with the following names:

4.6. Storage configuration 33

Yorc Documentation, Release 4.0.1

consul

This is the Consul KV store used by Yorc for main internal storage stuff. For example, the configuration of the stores
is kept in the Consul KV. As Consul is already configurable here: Consul configuration, no other configuration is
provided in this section.

fileCache

This is a file store with a cache system.

Here are specific properties for this implementation:

Property Name Description Data
Type

Re-
quired

Default

root_dir Root directory used for file stor-
age

string no work/store

cache_num_counters number of keys to track fre-
quency of

int64 no 1e5 (100
000)

cache_max_cost maximum cost of cache int64 no 1e7 (10 M)
cache_buffer_items number of keys per Get buffer int64 no 64
blocking_query_default_timeoutdefault timeout for blocking

queries
string no 5m (5 min-

utes)

For more information on cache properties, you can refer to Ristretto README

cipherFileCache

This is a file store with a cache system and file data encryption (AES-256 bits key) which requires a 32-bits length
passphrase.

Here are specific properties for this implementation in addition to fileCache properties:

Property
Name

Description Data
Type

Re-
quired

De-
fault

passphrase Passphrase used to generate the encryption key Required to be
32-bits length

string yes

Passphrase can be set with Secret function and retrieved from Vault as explained in the Vault integration
chapter.

Here is a JSON example of stores configuration with a cipherFileStore implementation for logs.

{
"storage": {
"reset": false,
"stores": [
{

"name": "myCipherFileStore",
"implementation": "cipherFileCache",
"migrate_data_from_consul": true,
"types": ["Log"],
"properties": {
"root_dir": "/mypath/to/store",

(continues on next page)

34 Chapter 4. Yorc Server Configuration

https://github.com/dgraph-io/ristretto

Yorc Documentation, Release 4.0.1

(continued from previous page)

"passphrase": "myverystrongpasswordo32bitlength"
}

}
]}

}

The same sample in YAML

storage:
reset: false
stores:
- name: myCipherFileStore
implementation: cipherFileCache
migrate_data_from_consul: true
types:
- Log
properties:

root_dir: "/mypath/to/store"
passphrase: "myverystrongpasswordo32bitlength"

Stores configuration is saved once when Yorc server starts. If you want to re-initialize storage, you have to set the
reset property to True and restart Yorc.

Warning: Pay attention that if any data is still existing after reset, Yorc will ignore it.

If no storage configuration is set, default stores implementations are used as defined previously to handle all store
types (Deployment, Log and Event).

If any storage configuration is set with partial stores types, the missing store types will be added with default imple-
mentations.

4.7 Vault configuration

Due to the pluggable nature of vaults support in Yorc their configuration differ from other configurable options. A vault
configuration option could be specified by either its configuration placeholder in the configuration file, a command
line flag or an environment variable.

The general principle is for a configurable option option_1 it should be specified in the configuration file as follow-
ing:

{
"vault": {
"type": "vault_implementation",
"option_1": "value"

}
}

Similarly a command line flag with the name --vault_option_1 and an environment variable with the name
YORC_VAULT_OPTION_1 will be automatically supported and recognized. The default order of precedence apply
here.

type is the only mandatory option for all vaults configurations, it allows to select the vault implementation by spec-
ifying it’s ID. If the type option is not present either in the config file, as a command line flag or as an environment
variable, Vault configuration will be ignored.

4.7. Vault configuration 35

Yorc Documentation, Release 4.0.1

The integration with a Vault is totally optional and this configuration part may be leave empty.

4.8 Builtin Vaults configuration

4.8.1 HashiCorp’s Vault

This is the only builtin supported Vault implementation. Implementation ID to use with the vault type configuration
parameter is hashicorp.

Bellow are recognized configuration options for Vault:

Option Name Description Data Type Required Default
address Address is the address of the Vault server.

This should be a complete URL such as
“https://vault.example.com”.

string yes

max_retries MaxRetries controls the maximum number
of times to retry when a 5xx error occurs.
Set to 0 or less to disable retrying.

integer no 0

timeout Timeout is for setting custom timeout
parameter in the HttpClient.

string no

ca_cert CACert is the path to a PEM-encoded CA
cert file to use to verify the Vault server SSL
certificate.

string no

ca_path CAPath is the path to a directory of
PEM-encoded CA cert files to verify the
Vault server SSL certificate.

string no

client_cert ClientCert is the path to the certificate for
Vault communication.

string no

client_key ClientKey is the path to the private key for
Vault communication

string no

tls_server_name TLSServerName, if set, is used to set the
SNI host when connecting via TLS.

string no

tls_skip_verify Disables SSL verification boolean no false
token Specifies the access token to use to connect

to vault. This is highly discouraged to this
option in the configuration file as the token
is a sensitive data and should not be written
on disk. Prefer the associated environment
variable

string no

36 Chapter 4. Yorc Server Configuration

https://vault.example.com

CHAPTER 5

Yorc Client CLI Configuration

This section is dedicated to the CLI part of yorc that covers everything except the server configuration detailed above.
It focus on configuration options commons to all the commands. Sub commands may have additional options please
use the cli help command to see them.

Just like for its server part Yorc Client CLI has various configuration options that could be specified either by
command-line flags, configuration file or environment variables.

If an option is specified several times using flags, environment and config file, command-line flag will have the prece-
dence then the environment variable and finally the value defined in the configuration file.

5.1 Command-line options

• --ca_file: This provides a file path to a PEM-encoded certificate authority. This implies the use of HTTPS
to connect to the Yorc REST API.

• --ca_path: Path to a directory of PEM-encoded certificates authorities. This implies the use of HTTPS to
connect to the Yorc REST API.

• --cert_file: File path to a PEM-encoded client certificate used to authenticate to the Yorc API. This must
be provided along with key-file. If one of key-file or cert-file is not provided then SSL authentication is disabled.
If both cert-file and key-file are provided this implies the use of HTTPS to connect to the Yorc REST API.

• -c or --config: config file (default is /etc/yorc/yorc-client.[json|yaml])

• --key_file: File path to a PEM-encoded client private key used to authenticate to the Yorc API. This must
be provided along with cert-file. If one of key-file or cert-file is not provided then SSL authentication is disabled.
If both cert-file and key-file are provided this implies the use of HTTPS to connect to the Yorc REST API.

• --skip_tls_verify: Controls whether a client verifies the server’s certificate chain and host name. If set
to true, TLS accepts any certificate presented by the server and any host name in that certificate. In this mode,
TLS is susceptible to man-in-the-middle attacks. This should be used only for testing. This implies the use of
HTTPS to connect to the Yorc REST API.

• -s or --ssl_enabled: Use HTTPS to connect to the Yorc REST API. This is automatically implied if one
of --ca_file, --ca_path, --cert_file, --key_file or --skip_tls_verify is provided.

37

Yorc Documentation, Release 4.0.1

• --yorc_api: specify the host and port used to join the Yorc’ REST API (default “localhost:8800”)

5.2 Configuration files

Configuration files are either JSON or YAML formatted as a single object containing the following configuration
options. By default Yorc will look for a file named yorc-client.json or yorc-client.yaml in /etc/yorc directory then
if not found in the current directory. The –config command line flag allows to specify an alternative configuration file.

• ca_file: Equivalent to –ca_file command-line flag.

• ca_path: Equivalent to –ca_path command-line flag.

• cert_file: Equivalent to –cert_file command-line flag.

• key_file: Equivalent to –key_file command-line flag.

• skip_tls_verify: Equivalent to –skip_tls_verify command-line flag.

• ssl_enabled: Equivalent to –ssl_enabled command-line flag.

• yorc_api: Equivalent to –yorc_api command-line flag.

5.3 Environment variables

• YORC_CA_FILE: Equivalent to –ca_file command-line flag.

• YORC_CA_PATH: Equivalent to –ca_path command-line flag.

• YORC_CERT_FILE: Equivalent to –cert_file command-line flag.

• YORC_KEY_FILE: Equivalent to –key_file command-line flag.

• YORC_SKIP_TLS_VERIFY: Equivalent to –skip_tls_verify command-line flag.

• YORC_SSL_ENABLED: Equivalent to –ssl_enabled command-line flag.

• YORC_API: Equivalent to –yorc_api command-line flag.

38 Chapter 5. Yorc Client CLI Configuration

CHAPTER 6

Starting Yorc

6.1 Starting Consul

Yorc requires a running Consul instance prior to be started.

Here is how to start a standalone Consul server instance on the same host than Yorc:

consul agent -server -bootstrap-expect 1 -data-dir ./consul-data

Note: Wait for the agent: Synced service 'consul' log message to appear before continuing

6.2 Starting Yorc

Please report to the Yorc Server Configuration for an exhaustive list of Yorc’ configuration options. At least OpenStack
access configuration files should be provided either by command-line flags, environment variables or configuration
elements. They are omitted bellow for brevity and considered as provided by a configuration file in one of the default
location.

Note that if you are using a passphrase on your ssh key, you have to start an ssh-agent before launching yorc. It is
strongly recommended to start one by giving him a socket name.

eval `ssh-agent -a /tmp/ssh-sock`

So in case of your ssh-agent process die, just restart it with the command above.

If your ssh key does not have a passphrase, do not start any ssh-agent before starting yorc and make sure that
environement variable SSH_AUTH_SOCK is not set.

killall ssh-agent
unset SSH_AUTH_SOCK

39

Yorc Documentation, Release 4.0.1

Then start yorc

yorc server

40 Chapter 6. Starting Yorc

CHAPTER 7

Yorc Command Line Interface

You can interact with a Yorc server using a command line interface (CLI). The same binary as for running a Yorc
server is used for the CLI.

7.1 General Options

• --yorc-api: Specifies the host and port used to join the Yorc’ REST API. Defaults to localhost:8800.
Configuration entry yorc_api and env var YORC_API may also be used.

• --no-color: Disable coloring output (By default coloring is enable).

• -s or --secured: Use HTTPS to connect to the Yorc REST API

• --ca-file: This provides a file path to a PEM-encoded certificate authority. This implies the use of HTTPS
to connect to the Yorc REST API.

• --skip-tls-verify: skip-tls-verify controls whether a client verifies the server’s certificate chain and host
name. If set to true, TLS accepts any certificate presented by the server and any host name in that certificate. In
this mode, TLS is susceptible to man-in-the-middle attacks. This should be used only for testing. This implies
the use of HTTPS to connect to the Yorc REST API.

7.2 CLI Commands related to deployments

All deployments related commands are sub-commands of a command named deployments. In practice that means
that the commands starts with

yorc deployments

For brevity deployments supports the following aliases: depls, depl, deps, dep and d.

41

Yorc Documentation, Release 4.0.1

7.2.1 Deploy a CSAR

Deploys a file or directory pointed by <csar_path> If <csar_path> point to a valid zip archive it is submitted to Yorc
as it. If <csar_path> point to a file or directory it is zipped before beeing submitted to Yorc. If <csar_path> point to a
single file it should be TOSCA YAML description.

yorc deployments deploy <csar_path> [flags]

Flags:

• --id, Specify a id for this deployment:

– Optional. If not provided, a unique ID is generated by Yorc.

– If this id already exists, a deployment update will be performed on a Yorc Premium version, an error
wil be returned on the Open Source version.

– Should respect the following format: ^[-_0-9a-zA-Z]+$ and should be less than 36 characters
long

• -e, --stream-events: Stream events after deploying the CSAR.

• -l, --stream-logs: Stream logs after deploying the CSAR. In this mode logs can’t be filtered, to use this
feature see the “log” command.

7.2.2 Undeploy a deployment

Undeploy an application specifying the deployment ID.

yorc deployments undeploy <DeploymentId> [flags]

Flags:

• -p, --purge: To use if you want to purge instead of undeploy.

• -e, --stream-events: Stream events after deploying the CSAR.

• -l, --stream-logs: Stream logs after deploying the CSAR. In this mode logs can’t be filtered, to use
this feature see the “log” command.

• --stop-on-error: By default if an error occurs during the undeployment, the error is bypassed and
the undeployment continues. This flag allows to stop if an error occurs.

7.2.3 List deployments

List active deployments. Giving there ids and statuses.

yorc deployments list

7.2.4 Get information on a specific deployment

Display information about a given deployment. It prints the deployment status and the status of all the nodes contained
in this deployment.

yorc deployments info <DeploymentId> [flags]

Flags:

42 Chapter 7. Yorc Command Line Interface

Yorc Documentation, Release 4.0.1

• -d, --detailed: Add details to the info command making it less concise and readable.

• -f, --follow: Follow deployment info updates (without details) until the deployment is finished.

7.2.5 Get deployment events

Streams events for all or a given deployment id

yorc deployments events [<DeploymentId>] [flags]

Flags:

• -b, --from-beginning: Show events from the beginning of a deployment

• -n, --no-stream: Show events then exit. Do not stream events. It implies –from-beginning

7.2.6 Get deployment logs

Streams logs for all or a given deployment id. The log format is: [Times-
tamp][Level][DeploymentID][WorkflowID][ExecutionID][NodeID][InstanceID][InterfaceName][OperationName][TypeID]Content

yorc deployments logs [<DeploymentId>] [flags]

Flags:

• -b, --from-beginning: Show logs from the beginning of a deployment

• -n, --no-stream: Show logs then exit. Do not stream logs. It implies –from-beginning

7.2.7 Get deployment tasks

Display info about the tasks related to a given deployment. It prints the tasks ID, type and status.

yorc deployments tasks <DeploymentId> [flags]

7.2.8 Get deployment task info

Display information about a given task specifying the deployment id and the task id.

yorc deployments task info <DeploymentId> <TaskId> [flags]

Flags:

• -w, --steps: Show steps of the related workflow associated to the task

7.2.9 Cancel a deployment task

Cancel a task specifying the deployment id and the task id. The task should be in status “INITIAL” or “RUNNING”
to be canceled.

yorc deployments tasks cancel <DeploymentId> <TaskId> [flags]

7.2. CLI Commands related to deployments 43

Yorc Documentation, Release 4.0.1

7.2.10 Resume a deployment task

Resume a task specifying the deployment id and the task id. The task should be in status “FAILED” to be resumed.

yorc deployments tasks resume <DeploymentId> <TaskId> [flags]

7.2.11 Fix a deployment task step

Fix a task step specifying the deployment id, the task id and the step name. The task step must be on error to be fixed.

yorc deployments tasks fix <DeploymentId> <TaskId> <StepName> [flags]

7.2.12 Scale a specific node

Scale a given node of a deployment <DeploymentId> by adding or removing the specified number of instances.

yorc deployments scale <DeploymentId> [flags]

Flags:

• -d, --delta: The non-zero number of instance to add (if > 0) or remove (if < 0).

• -n, --node: The name of the node that should be scaled.

• -e, --stream-events: Stream events after issuing the scaling request.

• -l, --stream-logs: Stream logs after issuing the scaling request. In this mode logs can’t be filtered,
to use this feature see the “log” command.

7.2.13 Execute a custom command

Executes a custom command for a given node of a deployment <DeploymentId>.

yorc deployments custom <DeploymentId> [flags]

Flags:

• --custom: Provide the custom command name (mandatory)

• --interface: Provide the interface name (mandatory)

• -d, --data: Provide the JSON format of the custom command with node, interface, custom and inputs
data

• -i, --input: Provide the input for the custom command

• -n, --node: Provide the node name (mandatory)

Example using --input flags:

yorc deployments custom deployID --custom cmdName --interface interfaceName --node
→˓nodeName --input 'key1=["value1","value2"]' --input 'key2="value3"'

Example using --data flag:

yorc deployments custom deployID --data '{"name":"cmdName","interface":"interfaceName
→˓",""node":"nodeName","inputs":{"key1":["value1","value2"],"key2":"value3"}}'

44 Chapter 7. Yorc Command Line Interface

Yorc Documentation, Release 4.0.1

Example using --data flag with instances selection:

yorc deployments custom deployID --data '{"name":"cmdName","interface":"interfaceName
→˓",""node":"nodeName","instances":["0"], "inputs":{"key1":["value1","value2"],"key2":
→˓"value3"}}'

7.2.14 List workflows of a given deployment

Lists workflows defined in a deployment <DeploymentId>.

yorc deployments workflows list <DeploymentId> [flags]

7.2.15 Show a workflow on a given deployment

Show a human readable textual representation of a given TOSCA workflow defined in deployment <DeploymentId>.

yorc deployments workflows show <DeploymentId> [flags]

Flags:

• -w, --workflow-name: The workflow name (mandatory)

When used with flag -w or --workflow-name, the command will show:

• the worflow input parameters, if any

• the workflow steps

• the workflow output values, if any

7.2.16 Generate a graphical representation of a workflow on a given deployment

Generate a GraphViz Dot format representation of a given workflow. The output can be easily converted to an image
by making use of the dot command provided by GraphViz:

yorc deployments workflows graph <DeploymentId> [flags]| dot -Tpng > graph.png

Flags:

• -w, --workflow-name: The workflows name (mandatory)

• --horizontal: Draw graph with an horizontal layout. (layout is vertical by default)

7.2.17 Execute a workflow on a given deployment

Trigger a workflow on deployment <DeploymentId>.

yorc deployments workflows execute <DeploymentId> [flags]

Flags:

• -d, --data: Provide the JSON format of the node instances selection and inputs data

• --continue-on-error: By default if an error occurs in a step of a workflow then other running steps
are cancelled and the workflow is stopped. This flag allows to continue to the next steps even if an error
occurs.

7.2. CLI Commands related to deployments 45

Yorc Documentation, Release 4.0.1

• -e, --stream-events: Stream events after riggering a workflow.

• -l, --stream-logs: Stream logs after triggering a workflow. In this mode logs can’t be filtered, to use
this feature see the “log” command.

• -w, --workflow-name: The workflows name (mandatory)

The --data flag allows to provide input parameters for the workflow, and if necessary, to select the target node
instances.

Information about the inputs parameters can be obtained using the workflows show command.

The list of the available node instances can be obtained with the info command:

yorc deployments info -d deployID

Example how to trigger the execution of workflow <workflowName> on instance “1” selected for node “node1”, and
workflow input parameters “key1” and “key2”.

yorc deployments workflows execute deployID -w workflowName --data '{"inputs":{"key1
→˓":["value1","value2"],"key2":"value3"}, "nodesinstances": [{ "name": "node1",
→˓"instances": ["1"] }]}'

Note that providing the target node instances is not mandatory. If not provided, Yorc will select all the instances
available for the nodes concerned by the workflow execution.

yorc deployments workflows execute deployID -w workflowName --data '{"inputs": {"key1
→˓": ["value1","value2"], "key2": "value3"}}'

The exec command returns the ID of a task created by Yorc to execute the <workflowName> workflow.

You can then use the following command to get the status of this task, and workflow output values if any:

yorc deployments task info deployID taskId

7.3 CLI Commands related to locations

All locations related commands are sub-commands of a command named locations. In practice that means that
the commands starts with

yorc locations

For brevity locations supports the following aliases: locs, loc and l.

7.3.1 List locations

This command allows to list all the locations with their complete definition: name, type and properties.

yorc locations list

7.3.2 Get information on a specific location

Display information about a given location (its type and properties).

46 Chapter 7. Yorc Command Line Interface

Yorc Documentation, Release 4.0.1

yorc locations info <locationName>

7.3.3 Add a location

Add a location defininition in JSON format.

yorc locations add [flags]

Flags:

• --data or -d : Specify a JSON format for location definition to add.

Example of location definition “testname” using --data flag:

yorc locations add --data '{"name": "testname", "type": "t", "properties" : { "p1" :
→˓"v1", "p2" : "v2" }}'

7.3.4 Update a location

Update a given location’s definition.

yorc locations update [flags]

Flags:

• --data or -d : Specify a JSON format for the location definition to update.

Example of “testname” location update using --data flag:

yorc locations add --data '{"name": "testname", "type": "other", "properties" : { "p1
→˓" : "v111" }}'

7.3.5 Delete a location

Delete a given location.

yorc locations delete <locationName>

7.3.6 Apply a locations configuration file

Applies location configurations provided in a YAML or JSON file. This command will compare and display the
differences between the current configurations and the configurations specified in the file. A user confirmation can be
asked before proceeding.

yorc locations apply <filename> [flags]

Flags:

• --auto-approve: Skip interactive approval before applying the new locations configuration.

7.3. CLI Commands related to locations 47

Yorc Documentation, Release 4.0.1

7.4 CLI Commands related to hosts pool

All hosts pool related commands are sub-commands of a command named hostspool. In practice that means that
the commands starts with

yorc hostspool

For brevity hostspool supports the following aliases: hostpool, hostsp, hpool and hp.

7.4.1 List hosts pools locations

List hosts pools locations managed by this Yorc cluster.

yorc hostspool locations

7.4.2 Add a host in a hosts pool location

Add host to a hosts pool location managed by this Yorc cluster. The <hostname> should not already exist. The con-
nection object of the JSON request is mandatory while the labels list is optional. This labels list should be composed
with elements with the “op” parameter set to “add” but it could be omitted.

yorc hostspool add <hostname> -l <locationName> [flags]

Flags:

• --location or -l : Need to provide the specified hosts pool location name. (mandatory)

• --data or -d : Specify a JSON format for the host pool to add. The JSON format for the host pool is
described below.

• --key or -k : Specify a private key to access host if no host connection is defined in JSON format.
(mandatory if no password is defined)

• --password or -p : Specify a password to access host if no host connection is defined in JSON format.
(mandatory if no private key is defined)

• --host: Hostname or ip address used to connect to the host. (defaults to the hostname in the hosts pool)

• --label: Label in form key=value to add to the host. May be specified several time.

• --port: Port used to connect to the host. (default 22)

• --user: User used to connect to the host (default “root”)

Host pool (JSON):

{
"connection": {
"host": "defaults_to_<hostname>",
"user": "defaults_to_root",
"port": "defaults_to_22",
"private_key": "one_of_password_or_private_key_required",
"password": "one_of_password_or_private_key_required"

},
"labels": [
{"name": "os.type", "value": "linux"},
{"op": "add", "name": "host.mem_size", "value": "4G"}

(continues on next page)

48 Chapter 7. Yorc Command Line Interface

Yorc Documentation, Release 4.0.1

(continued from previous page)

]
}

7.4.3 Update a host in a hosts pool location

Update labels list or connection of a host of a hosts pool location managed by this Yorc cluster. The <hostname>
should exists. Both connection and labels list object of the JSON request are optional. This labels list should be
composed with elements with the “op” parameter set to “add” or “remove” but defaults to “add” if omitted. Adding a
tag that already exists replace its value.

yorc hostspool update <hostname> -l <locationName> [flags]

Flags:

• --location or -l : Need to provide the specified hosts pool location name. (mandatory)

• --data or -d : Specify a JSON format for the host pool to update. The JSON format for the host pool is
described below.

• --add-label: Add a label in form ‘key=value’ to the host. May be specified several time.

• --host: Hostname or ip address used to connect to the host. (defaults to the hostname in the hosts pool)

• --key or -k: At any time a host of the pool should have at least one of private key or password. To delete
a registered private key use the “-” character.

• --password or -p: At any time a host of the pool should have at least one of private key or password.
To delete a registered password use the “-” character.

• --port: Port used to connect to the host. (defaults to the hostname in the hosts pool) (default 22)

• --remove-label: Remove a label from the host. May be specified several time.

• --user: User used to connect to the host (default “root”)

Host pool (JSON):

{
"connection": {
"host": "defaults_to_<hostname>",
"user": "defaults_to_root",
"port": "defaults_to_22",
"private_key": "one_of_password_or_private_key_required",
"password": "one_of_password_or_private_key_required"

},
"labels": [
{"name": "os.type", "value": "linux"},
{"op": "add", "name": "host.mem_size", "value": "4G"},
{"op": "remove", "name": "host.disk_size"}

]
}

7.4.4 Delete a host in a hosts pool location

Deletes a host from a hosts pool location managed by this Yorc cluster. The <hostname> should exists.

7.4. CLI Commands related to hosts pool 49

Yorc Documentation, Release 4.0.1

yorc hostspool delete <hostname> [<hostname>...] -l <locationName>

Flags:

• --location or -l : Need to provide the specified hosts pool location name. (mandatory)

7.4.5 List hosts in a hosts pool location

Lists hosts of a hosts pool location managed by this Yorc cluster.

yorc hostspool list -l <locationName> [flags]

Flags:

• --location or -l : Need to provide the specified hosts pool location name. (mandatory)

• --filter or -f: Filter hosts based on their labels. May be specified several time, filters are joined by
a logical ‘and’. Please refer to Filter on label existence for more details. Note: If the filter expression
contains a comma as in “mylabel in (v1,v2)”, wrap it with single quotes as in the example below:

yorc hp list -f '"mylabel in (v1, v2)"' -l <locationName>

7.4.6 Get information on a specific host in a hosts pool location

Gets the description of a host of a hosts pool location managed by this Yorc cluster.

yorc hostspool info <hostname> -l <locationName>

Flags:

• --location or -l : Need to provide the specified hosts pool location name. (mandatory)

7.4.7 Apply a Hosts Pool location configuration

Applies a Hosts Pool configuration for a specified location provided in a YAML or JSON file. This command will
compare and display the differences between the current Hosts Pool configuration and the configuration specified in
the file. A user confirmation will be asked before proceeding. The command will fail if the new configuration would
result in the removal of a host currently allocated for a deployment.

yorc hostspool apply <filename> -l <locationName>

Flags:

• --location or -l : Need to provide the specified hosts pool location name. (mandatory)

• --auto-approve: Skip interactive approval before applying the new Hosts Pool configuration.

YAML and JSON formats are accepted. The following properties are supported :

• hosts: List of hosts configuration. A host configuration supports the following properties,

– name: mandatory string identifying the host, no other host entry can have the same name value in the
file

– connection: Connection configuration,

50 Chapter 7. Yorc Command Line Interface

Yorc Documentation, Release 4.0.1

* host: Hostname or ip address used to connect to the host (defaults to the name described
above)

* user: name of the user used to connect to the host (default “root”)

* password: either a password or a private key should be provided

* private_key: Path to a private key file (or private key file content), either a password or a
private key should be provided

* port: Port used to connect to the host (default 22)

– labels: key/value pairs (see Filter on label existence for more details on labels)

Example of a YAML Hosts Pool configuration file :

hosts:
- name: host1

connection:
host: host1.example.com
user: test
private_key: /path/to/secrets/id_rsa
port: 22

labels:
environment: dev
testlabel: hello
host.cpu_frequency: 3 GHz
host.disk_size: 50 GB
host.mem_size: 4GB
host.num_cpus: "4"
os.architecture: x86_64
os.distribution: ubuntu
os.type: linux
os.version: "17.1"

- name: host2
connection:
host: host2.example.com
user: test
password: test

7.4.8 Export a Hosts Pool location configuration

Exports a Hosts Pool configuration for a specified location as a YAML or JSON representation, to the standard output
or a file.

yorc hostspool export -l <locationName>

Flags:

• --location or -l : Need to provide the specified hosts pool location name. (mandatory)

• --output or -o: Output format, yaml or json (default yaml)

• --file or -f: Path to a file where to store the output (default standard output)

7.4. CLI Commands related to hosts pool 51

Yorc Documentation, Release 4.0.1

52 Chapter 7. Yorc Command Line Interface

CHAPTER 8

Yorc Supported infrastructures

This section describes the state of our integration with supported infrastructures and their specificities. Yorc deals with
the concept of locations as described in Alien4Cloud documentation

A location allows Yorc to connect to an infrastructure and to handle multiple locations of the same infrastructure,
identified uniquely with its name.

8.1 Hosts Pool

The Hosts Pool is a very special kind of infrastructure. It consists in registering existing Compute nodes into a pool
managed by Yorc. Those compute nodes could be physical or virtual machines, containers or whatever as long as
Yorc can SSH into it. Yorc will be responsible to allocate and release hosts for deployments. This is safe to use it
concurrently in a Yorc cluster, Yorc instances will synchronize amongst themselves to ensure consistency of the pool.

To sum up this infrastructure type is really great when you want to use an infrastructure that is not yet supported by
Yorc. Just take care you’re responsible for handling the compatibility or conflicts of what is already installed and what
will be by Yorc on your hosts pool. The best practice is using container isolation. This is especially true if a host can
be shared by several apps by specifying in Tosca with the Compute shareable property.

8.1.1 Hosts management

Yorc comes with a REST API that allows to manage hosts in the pool and to easily integrate it with other systems.
The Yorc CLI leverage this REST API to make it user friendly, please refer to CLI Commands related to hosts pool
for more information

8.1.2 Hosts Pool labels & filters

It is strongly recommended to associate labels to your hosts. Labels allow to filter hosts based on criteria. Labels are
just a couple of key/value pair

53

http://alien4cloud.github.io/#/documentation/2.1.0/concepts/orchestrators_locations.html

Yorc Documentation, Release 4.0.1

Filter on label existence

These filters are used to check whether a label has been defined or not for the host, regardless of its value

• label_identifier will match if a label with the given identifier is defined. Example : gpu

• !label_identifier will match if no label with the given identifier has been defined for the host. Example
: !gpu

Filter on string value

These filters are used to check whether a label value is matching a string. String value has to be between simple or
double quotes : "" or ''.

• label_identifier = "wanted_value" and label_identifier =='wanted_value' will
match if the label with the given name has wanted_value as a value. Example : somename =
"somevalue"

• label_identifier != "wanted_value" will match if the label with the given name has not
wanted_value as a value. Example : somename != "somevalue"

Please note that when used through Yorc CLI interface, the filter has to be between double quotes "", and the filter
value has to be between simple quotes ' : yorc hp list -f "somename='someval'" is a valid command,
while yorc hp list -f somename="someval" and yorc hp list -f 'somename="someval"'
are not.

Filter on numeric value

These filters are used to check how a label value compares to a numeric value. Numeric value is a number written
without quotes and an optional unit. Currently supported units are golang durations (“ns”, “us” , “ms”, “s”, “m” or
“h”), bytes units (“B”, “KiB”, “KB”, “MiB”, “MB”, “GiB”, “GB”, “TiB”, “TB”, “PiB”, “PB”, “EiB”, “EB”) and
International System of Units (SI). The case of the unit does not matter.

• label_identifier == wanted_value and label_identifier == wanted_value will
match if the label with the given name has a value equal to wanted_value. Example : somename = 100

• label_identifier != wanted_value will match if the label with the given name has a value different
from wanted_value. Example : somename != 100

• label_identifier > wanted_value will match if the label with the given name has a value strictly
superior to wanted_value. Example : somename > 100

• label_identifier < wanted_value will match if the label with the given name has a value strictly
inferior to wanted_value. Example : somename < 100

• label_identifier >= wanted_value will match if the label with the given name has a value superior
or equal to wanted_value. Example : somename >= 100 ms

• label_identifier <= wanted_value will match if the label with the given name has a value inferior
or equal to wanted_value. Example : somename <= 100

Filter on regex value

These filters are used to check if a label value contains or excludes a regex. Regex value has to be between simple
or double quotes : "" or ''. “Contains” means that the value (string) of the label contains at least one substring
matching the regex. “Excludes” means that the value (string) of the label contains no substring matching the regex.

54 Chapter 8. Yorc Supported infrastructures

https://en.wikipedia.org/wiki/Metric_prefix

Yorc Documentation, Release 4.0.1

• label_identifier ~= "wanted_value" will match if the label with the given name has a value con-
taining wanted_value. Example : somename ~= "(a|bc)+"

• label_identifier !~ "wanted_value" will match if the label with the given name has a value ex-
cluding wanted_value . Example : somename !~ "(a|bc)+"

Filter on set appartenance

These filters are used to check is a label value is matching with one of the value of a set.

• label_identifier in (firstval, "secondval") will match if the label with the given name has
for value firstval or secondval. Example : somename in (gpu, cpu, none)

• label_identifier not in ("firstval", "secondval") and label_identifier notin
(firstval, secondval) will match if the label with the given name has not for value firstval or
secondval. Example : somename notin (gpu, cpu, none)

Please note that quote around the values are optional, and that the values will always be considered as strings here.
Therefore, label_identifier in (100) will not match if the string value of the label is 100.0.

Here are some example:

• gpu

• os.distribution != windows

• os.architecture == x86_64

• environment = "Q&A"

• environment in ("Q&A", dev, edge)

• gpu.type not in (k20, m60)

• gpu_nb > 1

• os.mem_size >= 4 GB

• os.disk_size < 1tb

• max_allocation_time <= 120h

Implicit filters & labels

TOSCA allows to specify requirements on Compute hardware and Compute operating system . These are capa-
bilities named host and os in the TOSCA node Compute . If those are specified in the topology, Yorc will
automatically add a filter host.<property_name> >= <property_value> <property_unit> or os.
<property_name> = <property_value> This will allow to select hosts matching the required criteria.

This means that it is strongly recommended to add the following labels to your hosts:

• host.num_cpus (ie. host.num_cpus=4)

• host.cpu_frequency (ie. host.cpu_frequency=3 GHz)

• host.disk_size (ie. host.disk_size=50 GB)

• host.mem_size (ie. host.mem_size=4GB)

• os.architecture (ie. os.architecture=x86_64)

• os.type (ie. os.type=linux)

• os.distribution (ie. os.distribution=ubuntu)

8.1. Hosts Pool 55

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_TYPE_CAPABILITIES_COMPUTE
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_TYPE_CAPABILITIES_OPSYS
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_TYPE_NODES_COMPUTE

Yorc Documentation, Release 4.0.1

• os.version (ie. os.version=17.10)

Some labels are also automatically exposed as TOSCA Compute instance attributes:

• if present a label named private_address will be used as attribute private_address and
ip_address of the Compute. If not set the connection host will be used instead this allows to specify a
network different for the applicative communication and for the orchestrator communication

• if present a label named public_address will be used as attribute public_address of the Compute.

• if present, following labels will fill the networks attribute of the Compute node:

– networks.<idx>.network_name (ie. networks.0.network_name)

– networks.<idx>.network_id (ie. networks.0.network_id)

– networks.<idx>.addresses as a coma separated list of addresses (ie. networks.0.
addresses)

The resources host pool labels (host.num_cpus, host.disk_size, host.mem_size) are automatically de-
creased and increased respectively when a host pool is allocated and released only if you specify any of these Tosca
host resources capabilities Compute in its Alien4Cloud applications. If you apply a new configuration on allocated
hosts with new host resources labels, they will be recalculated depending on existing allocations resources.

Hosts Pool Generic Resources

If you want to require specific resources as GPU by instance for your application’s computes, you can declare in the
hosts pool configuration the available list of GPUs for each host. To do that, you will use a host.resource.gpu
label, a comma-separated list of GPU resources as in the example below:

hosts:
- name: host1

connection:
user: centos
host: 1.2.3.4
private_key: /home/user/.ssh/yorc.pem
port: 22

labels:
os.architecture: x86_64
os.distribution: centos
os.type: linux
host.resource.gpu: "gpu2"

- name: hostspool-ci-1
connection:
user: centos
host: 6.7.8.9
private_key: /home/user/.ssh/yorc.pem
port: 22

labels:
os.architecture: x86_64
os.distribution: centos
os.type: linux
host.resource.gpu: "gpu0,gpu1"

In this example:

• host1 provides a list of GPUs with a single GPU ID: gpu2.

• host2 provides a list of GPUs with 2 ids: gpu0 and gpu1.

56 Chapter 8. Yorc Supported infrastructures

Yorc Documentation, Release 4.0.1

To require these specific resources in your application, an implicit matching will be done between the host.
resource.<name> labels and the Tosca host capability.

The host capability has been extended with yorc.capabilities.hostspool.Container to provide a
resources property.

The resource property is a list of yorc.datatypes.hostspool.GenericResource

A Generic Resource is defined with the following properties:

• name: The name of the generic resource. Can be “gpu” by instance and must be bound to host labels as:
host.resource.<name>.

• ids: List of required generic resource ID’s by node instance. Each list entry corresponds to a comma-separated
list of required generic resource ID’s for each node instance. An ID must only contains the following characters:
-_0-9a-zA-Z_:./-

• number: The number of generic resource required. Either ids or number must be filled to define the resource
need.

Here is an example of an application which requires some GPUs:

topology_template:
node_templates:
ComputeA:

type: yorc.nodes.hostspool.Compute
properties:

shareable: true
capabilities:

host:
properties:

resources:
- name: gpu
ids:
- gpu2

ComputeB:
type: yorc.nodes.hostspool.Compute
properties:

shareable: true
capabilities:

host:
properties:

resources:
- name: gpu
number: 2

The ComputeA node requires a specific GPU’s ID: gpu2.

The ComputeB node requires 2 GPUs without specifying any ID’s requirement.

If you deploy the application on the hosts pool location previously defined, you will get the following allocations:

$ yorc hp list -l hp
+----------------+--+-----------+-----------
→˓---------------------+---------+-----------------------------------+
| Name | Connection | Status |
→˓Allocations | Message | Labels |
+----------------+--+-----------+-----------
→˓---------------------+---------+-----------------------------------+
| host1 | user: centos | allocated |
→˓deployment: testApp | | host.resource.gpu: "" |

(continues on next page)

8.1. Hosts Pool 57

Yorc Documentation, Release 4.0.1

(continued from previous page)

| | private key: /home/user/.ssh/yorc.pem | | node-
→˓instance: ComputeA | | os.architecture: x86_64 |
| | host: 1.2.3.4 | |
→˓shareable: true | | os.distribution: centos |
| | port: 22 | | host.
→˓resource.gpu: "gpu2" | | os.type: linux |
| | | |
→˓ | | |
| | | |
→˓ | | |
| | | |
→˓ | | |
| | | |
→˓ | | |
| host2 | user: centos | allocated |
→˓deployment: testApp | | host.resource.gpu: "" |
| | private key: /home/user/.ssh/yorc.pem | | node-
→˓instance: ComputeB | | os.architecture: x86_64 |
| | host: 6.7.8.9 | |
→˓shareable: true | | os.distribution: centos |
| | port: 22 | | host.
→˓resource.gpu: "gpu0,gpu1" | | os.type: linux |
+----------------+--+-----------+-----------
→˓---------------------+---------+-----------------------------------+

The ComputeA GPU requirement on a gpu2 ID has been done by host1.

The ComputeB GPU requirement of 2 GPUs ID has been done by host2.

Both host1 and host2 are no longer providing GPUs resources as these resources are defined as consumable.

By default, a generic resource is consumable. It means a resource can be only used by a single compute. If you want
to share a generic resource among many computes, you have to specify the following label host.resource.gpu.
no_consume: true as below in the host declaration:

hosts:
- name: hostspool-ci-1

labels:
host.resource.gpu: "gpu0,gpu1"
host.resource.gpu.no_consume: true

A Tosca instance attribute “gpu” will be exposed with the allocated resources for each node instance once the applica-
tion is deployed.

Note: If you apply a new configuration on allocated hosts with new host generic resources labels, they will be recal-
culated depending on existing allocations resources.

8.2 Slurm

Slurm is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large
and small Linux clusters. It is wildly used in High Performance Computing and it is the default scheduler of the Bull
Super Computer Suite .

Yorc interacts with Slurm to allocate nodes on its cluster but also to run jobs.

Slurm jobs have been modeled in Tosca and this allows Yorc to execute them, either as regular jobs or as
Singularity jobs.

58 Chapter 8. Yorc Supported infrastructures

https://slurm.schedmd.com/
https://atos.net/en/products/high-performance-computing-hpc
https://atos.net/en/products/high-performance-computing-hpc

Yorc Documentation, Release 4.0.1

Singularity is a container system similar to Docker but designed to integrate well HPC environments. Singularity
allows users execute a command inside a Singularity or a Docker container, as a job submission. See Working with
jobs for more information.

Yorc supports the following resources on Slurm:

• Node Allocations as Computes

• Jobs

• Singularity Jobs.

8.2.1 Resources based scheduling

TOSCA allows to specify requirements on Compute nodes if specified num_cpus and mem_size requirements are
used to allocate only the required resoures on computes. This allows to share a Slurm managed compute across several
deployments. If not specified a whole compute node will be allocated.

Yorc also support Slurm GRES based scheduling. This is generally used to request a host with a specific type of
resource (consumable or not) such as GPUs.

8.3 Google Cloud Platform

The Google Cloud Platform integration within Yorc is ready for production and we support the following resources:

• Compute Instances

• Persistent Disks

• Virtual Private Clouds (VPC)

• Static IP Addresses.

8.3.1 Future work

It is planned to support soon the following feature:

• Cloud VPN

8.4 AWS

The AWS integration within Yorc allows to provision:

• EC2 Compute Instances.

• Elastic IPs.

This part is ready for production but we plan to support soon the following features to make it production-ready:

• Elastic Block Store provisioning

• Networks provisioning with Virtual Private Cloud

8.3. Google Cloud Platform 59

https://www.sylabs.io/singularity/
https://yorc-a4c-plugin.readthedocs.io/en/latest/jobs.html
https://yorc-a4c-plugin.readthedocs.io/en/latest/jobs.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_TYPE_CAPABILITIES_COMPUTE
https://slurm.schedmd.com/gres.html

Yorc Documentation, Release 4.0.1

8.4.1 Future work

• We plan to work on modeling AWS Batch Jobs in TOSCA and execute them thanks to Yorc.

• We plan to work on AWS ECS to deploy containers

8.5 OpenStack

The OpenStack integration within Yorc is production-ready. Yorc is currently supporting:

• Compute Instances

• Block Storages

• Virtual Networks

• Floating IPs provisioning.

8.5.1 Future work

• We plan to work on modeling OpenStack Mistral workflows in TOSCA and execute them thanks to Yorc.

• We plan to work on OpenStack Zun to deploy containers directly on top of OpenStack

8.6 Kubernetes

The Kubernetes integration within Yorc is now production-ready. Yorc is currently supporting the following K8s
resources:

• Deployments.

• Jobs.

• Services.

• StatefulSets.

• PersistentVolumeClaims.

The Google Kubernetes Engine is also supported as a Kubernetes cluster.

8.6.1 Future work

It is planned to support soon the following features:

• ConfigMaps.

• Secrets.

60 Chapter 8. Yorc Supported infrastructures

https://aws.amazon.com/batch/
https://aws.amazon.com/ecs
https://www.openstack.org/
https://wiki.openstack.org/wiki/Mistral
https://wiki.openstack.org/wiki/Zun
https://kubernetes.io/
https://cloud.google.com/kubernetes-engine/

CHAPTER 9

TOSCA support in Yorc

TOSCA stands for Topology and Orchestration Specification for Cloud Applications. It is an OASIS standard specifi-
cation. Currently Yorc implements the version TOSCA Simple Profile in YAML Version 1.2 of this specification.

Yorc is a TOSCA based orchestrator, meaning that it consumes TOSCA definitions and services templates to perform
applications deployments and lifecycle management.

Yorc is also workflow driven meaning that it will execute workflows defined in a TOSCA service template to perform
a deployment. The easiest way to generate valid TOSCA definitions for Yorc is to use a TOSCA web composer called
Alien4Cloud.

Yorc provides an Alien4Cloud (A4C) plugin that allows A4C to interact with Yorc.

Alien4Cloud provides a great documentation on writing TOSCA components.

Bellow are the specificities of Yorc

9.1 TOSCA Operations

9.1.1 Supported TOSCA functions

Yorc supports the following functions that could be used in value assignments (generally for attributes and operation
inputs).

• get_input: [input_name]: Will retrieve the value of a Topology’s input

• get_property: [<entity_name>, <optional_cap_name>, <property_name>,
<nested_property_name_or_index_1>, ..., <nested_property_name_or_index_n>
]: Will retrieve the value of a property in a given entity. <entity_name> could be the name of a given node
or relationship template, SELF for the entity holding this function, HOST for one of the hosts (in the hosted-on
hierarchy) of the entity holding this function, SOURCE, TARGET respectively for the source or the target entity
in case of a relationship. <optional_cap_name> is optional and allows to specify that we target a property
in a capability rather directly on the node.

61

https://www.oasis-open.org/
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
http://alien4cloud.github.io/
http://alien4cloud.github.io/#/documentation/1.4.0/devops_guide/dev_ops_guide.html

Yorc Documentation, Release 4.0.1

• get_attribute: [<entity_name>, <optional_cap_name>, <property_name>,
<nested_property_name_or_index_1>, ..., <nested_property_name_or_index_n>
]: see get_property above

• concat: [<string_value_expressions_*>]: concats the result of each nested expres-
sion. Ex: concat: ["http://", get_attribute: [SELF, public_address],
":", get_attribute: [SELF, port]]

• get_operation_output: [<modelable_entity_name>, <interface_name>,
<operation_name>, <output_variable_name>]: Retrieves the output of an operation

• get_secret: [<secret_path>, <optional_implementation_specific_options>]:
instructs to look for the value within a connected vault instead of within the Topology. Resulting value is
considered as a secret by Yorc.

9.1.2 Supported Operations implementations

Currently Yorc supports as builtin implementations for operations:

• Bash scripts

• Python scripts

• Ansible Playbooks

New implementations can be plugged into Yorc using its plugin mechanism.

9.1.3 Execution Context

Python and Bash scripts are executed by a wrapper script used to retrieve operations outputs. This script itself is
executed using a bash -l command meaning that the login profile of the user used to connect to the host will be
loaded.

Warning: Defining operations inputs with the same name as Bash reserved variables like USER, HOME,
HOSTNAME and so on. . . may lead to unexpected results. . . Avoid to use them.

9.1.4 Injected Environment Variables

When operation scripts are called, some environment variables are injected by Yorc.

• For Python and Bash scripts those variables are injected as environment variables.

• For Python scripts they are also injected as global variables of the script and can be used directly.

• For Ansible playbooks they are injected as Playbook variables.

9.1.5 Operation outputs

TOSCA defines a function called get_operation_output, this function instructs Yorc to retrieve a value at the end of a
operation. In order to allow Yorc to retrieve those values you should depending on your operation implementation:

• in Bash scripts you should export a variable named as the output variable (case sensitively)

• in Python scripts you should define a variable (globally to your script root not locally to a class or function)
named as the output variable (case sensitively)

62 Chapter 9. TOSCA support in Yorc

http://tldp.org/LDP/abs/html/internalvariables.html
http://docs.ansible.com/ansible/latest/playbooks_variables.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_FUNCTION_GET_OPERATION_OUTPUT

Yorc Documentation, Release 4.0.1

• in Ansible playbooks you should set a fact named as the output variable (case sensitively)

Node operation

For node operation script, the following variables are available:

• NODE: the node name.

• INSTANCE: the unique instance ID.

• INSTANCES: A comma separated list of all available instance IDs.

• HOST: the node name of the node that host the current one.

• DEPLOYMENT_ID: the unique deployment identifier.

In addition, any inputs parameters defined on the operation definition are also injected.

Relationship operation

For relationship operation script, the following variables are available:

• TARGET_NODE: The node name that is targeted by the relationship.

• TARGET_INSTANCE: The instance ID that is targeted by the relatonship.

• TARGET_INSTANCES: Comma separated list of all available instance IDs for the target node.

• TARGET_HOST: The node name of the node that host the node that is targeted by the relationship.

• SOURCE_NODE: The node name that is the source of the relationship.

• SOURCE_INSTANCE: The instance ID of the source of the relationship.

• SOURCE_INSTANCES: Comma separated list of all available source instance IDs.

• SOURCE_HOST: The node name of the node that host the node that is the source of the relationship.

• DEPLOYMENT_ID: the unique deployment identifier.

In addition, properties and attributes of the target capability of the relationship are injected automatically. We do this
as they can only be retrieved by knowing in advance the actual name of the capability, which is not very practical
when designing a generic operation. As a target component may have several capabilities that match the relationship
capability type we inject the following variables:

• TARGET_CAPABILITY_NAMES: comma-separated list of matching capabilities names. It could be used to
loop over the injected variables

• TARGET_CAPABILITY_<capabilityName>_TYPE: actual type of the capability

• TARGET_CAPABILITY_TYPE: actual type of the capability of the first matching capability

• TARGET_CAPABILITY_<capabilityName>_PROPERTY_<propertyName>: value of a property

• TARGET_CAPABILITY_PROPERTY_<propertyName>: value of a property for the first matching capability

• TARGET_CAPABILITY_<capabilityName>_<instanceName>_ATTRIBUTE_<attributeName>: value of an
attribute of a given instance

• TARGET_CAPABILITY_<instanceName>_ATTRIBUTE_<attributeName>: value of an attribute of a given
instance for the first matching capability

Finally, any inputs parameters defined on the operation definition are also injected.

9.1. TOSCA Operations 63

Yorc Documentation, Release 4.0.1

Attribute and multiple instances

When an operation defines an input, the value is available by fetching an environment variable. If you have multiple instances,
you’ll be able to fetch the input value for all instances by prefixing the input name by the instance ID.

Let’s imagine you have an relationship’s configure interface operation defined like this:

add_target:
inputs:
TARGET_IP: { get_attribute: [TARGET, ip_address] }

implementation: scripts/add_target.sh

Let’s imagine we have a node named MyNodeS with 2 instances: MyNodeS_1, MyNodeS_2. The node MyNodeS is
connected to the target node MyNodeT which has also 2 instances MyNodeT_1 and MyNodeT_2.

When the add_target.sh script is executed for the relationship instance that connects MyNodeS_1 to MyNodeT_1, the
following variables will be available:

TARGET_NODE=MyNodeT
TARGET_INSTANCE=MyNodeT_1
TARGET_INSTANCES=MyNodeT_1,MyNodeT_2
SOURCE_NODE=MyNodeS
SOURCE_INSTANCE=MyNodeS_1
SOURCE_INSTANCES=MyNodeS_1,MyNodeS_2
TARGET_IP=192.168.0.11
MyNodeT_1_TARGET_IP=192.168.0.11
MyNodeT_2_TARGET_IP=192.168.0.12

9.1.6 Orchestrator-hosted Operations

In the general case an operation is an implementation of a step within a node’s lifecycle (install a software package for
instance). Those operations should be executed on the Compute that hosts the node. Yorc handles this case seamlessly
and execute your implementation artifacts on the required host.

But sometimes you may want to model in TOSCA an interaction with something (generally a service) that is not hosted
on a compute of your application. For those usecases the TOSCA specification support a tag called operation_host this
tag could be set either on an operation implementation or on a workflow step. If set to the keyword ORCHESTRATOR
this tag indicates that the operation should be executed on the host of the orchestrator.

For executing those kind of operations Yorc supports two different behaviors. The first one is to execute imple-
mentation artifacts directly on the orchestrator’s host. But we think that running user-defined bash or python scripts
directly on the orchestrator’s host may be dangerous. So, Yorc offers an alternative that allows to run those scripts in
a sandboxed environment implemented by a Docker container. This is the recommended solution.

Choosing one or the other solution is done by configuration see ansible hosted operations options in the configuration
section. If a default_sandbox option is provided, it will be used to start a docker sandbox. Otherwise if unsand-
boxed_operations_allowed is set to true (defaults to false) then operations are executed on orchestrator’s host.
Otherwise Yorc will rise an error if an orchestrator hosted operation should be executed.

In order to let Yorc interact with Docker to manage sandboxes some requirements should be met on the Yorc’s host:

• Docker service should be installed and running

• Docker CLI should be installed

• the pip package docker_py should be installed

Yorc uses standard Docker’s APIs so DOCKER_HOST and DOCKER_CERT_PATH environment variables could be
used to configure the way Yorc interacts with Docker.

64 Chapter 9. TOSCA support in Yorc

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html#DEFN_ELEMENT_OPERATION_DEF
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html#DEFN_ENTITY_WORKFLOW_STEP_DEFN

Yorc Documentation, Release 4.0.1

In order to execute operations on containers, either the following requirements should be met on Docker images used
as sandboxes:

• the /usr/bin/env command should be present

• a python 2 interpreter compatible with ansible 2.7.9 should be available as the python command

or Yorc configuration should provide a python interpreter path through the Ansible behavioral inventory parameter
ansible_python_interpreter, like below in a Yaml Yorc configuration excerpt specifying to use python3 :

ansible:
inventory:
"hosted_operations:vars":
- ansible_python_interpreter=/usr/bin/python3

See Ansible Inventory Configuration section for more details.

Apart from the requirements described above, you can install whatever you want in your Docker image as prerequisites
of your operations artifacts.

Yorc will automatically pull the required Docker image and start a separated Docker sandbox before each orchestrator-
hosted operation and automatically destroy it after the operation execution.

Caution: Currently setting operation_host on operation implementation is supported in Yorc but
not in Alien4Cloud. That said, when using Alien4Cloud workflows will automatically be generated with
operation_host=ORCHESTRATOR for nodes that are not hosted on a Compute.

9.1. TOSCA Operations 65

Yorc Documentation, Release 4.0.1

66 Chapter 9. TOSCA support in Yorc

CHAPTER 10

Run Yorc in Secured mode

To run Yorc in secured mode, the following issues have to be addressed:

• Setup a secured Consul cluster

• Setup a secured Yorc server and configure it to use a secured Consul client

• Setup Alien4Cloud security and configure it to use a secured Yorc server

In the case of Yorc HA setup (see High level view of a typical HA installation), all the Yorc servers composing the
cluster need to be secured.

To secure the components listed above, and enable TLS, Multi-Domain (SAN) certificates need to be generated. A
short list of commands based on openSSL is provided below.

10.1 Generate SSL certificates with SAN

The SSL certificates you will generate need to be signed by a Certificate Authority. You might already have one,
otherwise, create it using OpenSSL commands below:

openssl genrsa -aes256 -out ca.key 4096
openssl req -new -x509 -days 365 -key ca.key -sha256 -out ca.pem

10.1.1 Generate certificates signed by your CA

You need to generate certificates for all the software component to be secured (Consul agents, Yorc servers,
Alien4Cloud).

Use the commands below for each component instance (where <IP> represents IP address used to connect to the
component). Replace comp by a string of your choise corresponding to the components to be secured.

67

Yorc Documentation, Release 4.0.1

openssl genrsa -out comp.key 4096
openssl req -new -sha256 -key comp.key -subj "/C=FR/O=Atos/CN=127.0.0.1" -reqexts
→˓SAN -config <(cat /etc/pki/tls/openssl.cnf <(printf "[SAN]\nsubjectAltName=IP:127.0.
→˓0.1,IP:<IP>,DNS:localhost")) -out comp.csr
openssl x509 -req -in comp.csr -CA ca.pem -CAkey ca.key -CAcreateserial -out comp.pem
→˓-days 2048 -extensions SAN -extfile <(cat /etc/pki/tls/openssl.cnf <(printf
→˓"[SAN]\nsubjectAltName=IP:127.0.0.1,IP:<IP>,DNS:localhost"))

In the sections below, the comp.key and comp.pem files path are used in the components’ configuration file.

10.2 Secured Consul cluster Setup

Note: You need to generate certificates for all the Consul agents within the Consul cluster you setup.

In a High Availability cluster, you need to setup at least 3 consul servers, and one consul client on each host where a
Yorc server is running.

Check Consul documentation for details about agent’s configuration.

You may find below a typical configuration file for a consul server ; to be updated after having generated the
consul_server.key and consul_server.pem files.

{
"domain": "yorc",
"data_dir": "/tmp/work",
"client_addr": "0.0.0.0",
"advertise_addr": "{SERVER_IP}",
"server": true,
"bootstrap": true,
"ui": true,
"encrypt": "{ENCRYPT_KEY},
"ports": {

"https": 8543
},
"key_file": "{PATH_TO_CONSUL_SERVER_KEY}",
"cert_file": "{PATH_TO_CONSUL_SERVER_PEM}",
"ca_file": "{PATH_TO_CA_PEM}",
"verify_incoming": true,
"verify_outgoing": true

}

And below, a typical configuration file for a consul client.

{
"domain": "yorc",
"data_dir": "/tmp/work",
"client_addr": "0.0.0.0",
"advertise_addr": "{IP}",
"retry_join": ["{SERVER_IP}"],
"encrypt": "{ENCRYPT_KEY},
"ports": {
"https": 8543

},
"key_file": "{PATH_TO_CONSUL_CLIENT_KEY}",

(continues on next page)

68 Chapter 10. Run Yorc in Secured mode

https://www.consul.io/docs/agent/options.html

Yorc Documentation, Release 4.0.1

(continued from previous page)

"cert_file": "{PATH_TO_CONSUL_CLIENT_PEM}",
"ca_file": "{PATH_TO_CA_PEM}",
"verify_incoming_rpc": true,
"verify_outgoing": true

}

In the above example, the encryption is enabled for the gossip traffic inside the Consul cluster. Check Consul docu-
mentation for details network traffic encryption.

You can also consult this Blog. You may found useful information about how to install CA certificate in the OS, in
case you get errors about trusting the signing authority.

10.3 Secured Yorc Setup

Generate a yorc_server.key and yorc_server.pem using the above commands and replace <IP> by the
host’s IP address.

Bellow is an example of configuration file with TLS enabled and using the collocated and secured Consul client.

{
"consul": {

"ssl": "true",
"ca_cert": "{PATH_TO_CA_PEM}",
"key_file": "{PATH_TO_CONSUL_CLIENT_KEY}",
"cert_file": "{PATH_TO_CONSUL_CLIENT_PEM}",
"address": "127.0.0.1:8543"

},
"resources_prefix": "yorc1-",
"key_file": "{PATH_TO_YORC_SERVER_KEY}",
"cert_file": "{PATH_TO_YORC_SERVER_PEM}",
"ca_file": "{PATH_TO_CA_PEM}",
"ssl_verify": true,
"locations_file_path": "path-to-locations-yaml-or-json-config"

}

In the above example SSL verification is enabled for Yorc (ssl_verify set to true). In this case, the Consul Agent must
be enabled to use TLS configuration files for HTTP health checks. Otherwise, the TLS handshake may fail. You can
find below the Consul agent’s configuration:

{
"domain": "yorc",
"data_dir": "/tmp/work",
"client_addr": "0.0.0.0",
"advertise_addr": "{IP}",
"ui": true,
"retry_join": ["{SERVER_IP}"],
"encrypt": "{ENCRYPT_KEY}",
"ports": {
"https": 8543

},
"key_file": "{PATH_TO_CONSUL_CLIENT_KEY}",
"cert_file": "{PATH_TO_CONSUL_CLIENT_PEM}",
"ca_file": "{PATH_TO_CA_PEM}",
"enable_agent_tls_for_checks": true,
"verify_incoming_rpc": true,

(continues on next page)

10.3. Secured Yorc Setup 69

https://www.consul.io/docs/agent/encryption.html
http://russellsimpkins.blogspot.fr/2015/10/consul-adding-tls-using-self-signed.html

Yorc Documentation, Release 4.0.1

(continued from previous page)

"verify_outgoing": true
}

As for Consul, you may need to install CA certificate in the OS, in case you get errors about trusting the signing
authority.

10.4 Secured Yorc CLI Setup

If ssl_verify is enabled for Yorc server, the Yorc CLI have to provide a client certificate signed by the Yorc’s
Certificate Authority.

So, create a yorc_client.key and yorc_client.pem using the above commands and replace <IP> by the
host’s IP address.

Bellow is an example of configuration file with TLS enabled. Refer to Yorc Client CLI Configuration for more infor-
mation.

{
"key_file": "{PATH_TO_YORC_CLIENT_KEY}",
"cert_file": "{PATH_TO_YORC_CLIENT_PEM}",
"ca_file": "{PATH_TO_CA_PEM}",
"yorc_api": "<YORC_SERVER_IP>:8800"

}

10.5 Setup Alien4Cloud security

See the corresponding Chapter in Alien4Cloud plugin documentation

70 Chapter 10. Run Yorc in Secured mode

CHAPTER 11

Integrate Yorc with a Vault

A Vault is used to store secrets in a secured way.

Yorc allows to interact with a Vault to retrieve sensitive data linked to infrastructures such as passwords.

Currently Yorc supports only Vault from HashiCorp we plan to support others implementations in Yorc either builtin
or by plugins.

The vault integration allows to specify infrastructures parameters as Go Template format and to use a specific function
called secret this function takes one argument that refers to the secret identifier and an optional list of string argu-
ments whose signification is dependent to the Vault implementation. This function returns an object implementing the
vault.Secret interface which has two functions String() that returns the string representation of a secret and Raw()
that returns a Vault implementation-dependent object. The second way most powerful but you should look at the Vault
implementation documentation to know how to use it.

11.1 HashiCorp’s Vault integration

HashiCorp’s Vault integration is builtin Yorc. Please refer to the HashiCorps Vault configuration section to know
how to setup a connection to a running Vault. For more information about Vault itself please refer to its online
documentation.

Here is how the secret function is handled by this implementation, the usage is:

secret "/secret/path/in/vault" ["options" ...]

Recognized options are:

• data=targetdata: Vault allows to store multiple keys/values within a map called Data, this option allows
to render only the kay named targetdata. Only one data option is allowed.

The String() function on the returned secret will render the whole map if there is no data options specified.

The Raw() function on the returned secret will return a github.com/hashicorp/vault/api.Secret.

Bellow are some of the most common ways to get a specific secret using the templating language:

• {{ with (secret "/secret/yorc/mysecret").Raw }}{{ .Data.myKey }}{{end}}

71

https://www.vaultproject.io/
https://golang.org/pkg/text/template/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://godoc.org/github.com/hashicorp/vault/api#Secret

Yorc Documentation, Release 4.0.1

• {{ secret "/secret/yorc/mysecret" "data=myKey" | print }}

• {{ (secret "/secret/yorc/mysecret" "data=myKey").String }}

72 Chapter 11. Integrate Yorc with a Vault

CHAPTER 12

Run Yorc in High Availability (HA) mode

12.1 High level view of a typical HA installation

The bellow figure illustrates how a typical Yorc setup for enabling High Availability looks like.

This setup is composed by the following main components:

• A POSIX distributed file system (NFS as an example in the figure above) to store deployments recipes (Shell
scripts, Ansible recipes, binaries. . .)

• A cluster of Consul servers

• A cluster of Yorc servers each one collocated with a Consul agent and connected to the distributed filesystem

• A Alien4Cloud with the Yorc plugin collocated with a Consul agent

The next sections describes how to setup those components.

73

Yorc Documentation, Release 4.0.1

12.2 Yorc HA setup

12.2.1 Distributed File System

Describing how to setup a Distributed File System (DSF) is out of the scope of this document. When choosing your
DSF please take care to verify that it is POSIX compatible and can be mounted as linux partition.

12.2.2 Consul servers

To setup a cluster of Consul servers please refer to the Consul online documentation. One important thing to note is
that you will need 3 or 5 Consul servers to ensure HA.

12.2.3 Yorc servers

Each Yorc server should be installed on its own host with a local Consul agent and a partition mounted on the Dis-
tributed File System. The Consul agent should run in client mode (by opposition to the server mode). Here is how to
run a Consul agent in client mode and connect it to a running Consul server cluster.

consul agent -config-dir ./consul-conf -data-dir ./consul-data -retry-join
→˓<ConsulServer1IP> -retry-join <ConsulServer2IP> -retry-join <ConsulServer3IP>

When starting the Yorc server instance, a Consul service is automatically created with a defined TCP check on Yorc
port.

When running Yorc you should use the –server_id command line flag (or equivalent configuration options or environ-
ment variable) to specify the server ID used to identify the server node in a cluster.

When running Yorc you should use the –working_directory command line flag (or equivalent configuration options or
environment variable) to specify a working directory on the Distributed File System.

12.2.4 Alien4Cloud

Please refer to the dedicated Yorc plugin for Alien4Cloud documentation for its typical installation and configuration.

Install and run Consul agent in client mode.

consul agent -config-dir ./consul-conf -data-dir ./consul-data -retry-join
→˓<ConsulServer1IP> -retry-join <ConsulServer2IP> -retry-join <ConsulServer3IP> -
→˓recursor <ConsulServer1IP> -recursor <ConsulServer2IP> -recursor <ConsulServer3IP>

Configure Consul DNS forwarding in order to be able to resolve yorc.service.consul DNS domain name.

In the Yorc plugin for Alien4Cloud configuration use http://yorc.service.consul:8800 as Yorc URL
instead of using a IP address. This DNS name will be resolved by Consul (using a round-robin algorithm) to available
Yorc servers.

If a Yorc server becomes unavailable, then Consul will detect it by using the service check and will stop to resolve the
DNS requests to this Yorc instance, allowing seamless failover.

74 Chapter 12. Run Yorc in High Availability (HA) mode

https://www.consul.io/docs/guides/bootstrapping.html
https://www.consul.io/docs/guides/forwarding.html

CHAPTER 13

Run Yorc in a docker container

Along with a Yorc release we also provide a docker image that ships Yorc and its dependencies.

This docker image is published in several ways:

• A tgz version of the image is published on the github release page for each release.

• Pre-release (milestone) versions and development branches are published in Artifactory. You can use it to pull
the image directly from the docker command. For instance: docker pull ystia-docker.jfrog.io/
ystia/yorc:3.0.0-M5

• Starting with Yorc 3.0 GA version are also published on the docker hub You can use it to pull the image directly
from the docker command. For instance: docker pull ystia/yorc:3.0.0

13.1 Image components

This Docker image is made of the following components:

13.1.1 S6 init system

We use the S6 overlay for containers in order to have a minimal init system that supervise our services and reap
zombies processes.

13.1.2 Consul

Consul is the distributed data store for Yorc. By default it will run in an isolated server mode to provide a fully
functional container out of the box. But it could be configured to connect to a server and run in agent mode.

The Consul binary is installed in this image as described in the Yorc install section. It is run as a user and group named
consul. Consul data directory is set by default to /var/consul.

75

https://github.com/ystia/yorc/releases
https://ystia.jfrog.io/ystia/webapp/#/artifacts/browse/tree/General/docker
https://hub.docker.com/r/ystia/yorc/
https://github.com/just-containers/s6-overlay
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/
https://www.consul.io/

Yorc Documentation, Release 4.0.1

Configure Consul

To configure Consul in the container you can either mount configuration files into /etc/consul or use environment
variables. Following special variables are recognized:

• CONSUL_MODE: if set to server or not defined then Consul will run in server mode. Any other configuration
will lead to Consul running in agent mode.

• NB_CONSUL_SERVER: allows to set the bootstrap-expect command line flag for consul. If CONSUL_MODE is
server and NB_CONSUL_SERVER is not defined then it defaults to 1.

• SERVERS_TO_JOIN: allows to provide a coma-separated list of server to connects to. This works either in
server or agent mode.

In addition any environment variable that starts with CONSUL_ENV_will be added to a dedicated consul configuration
file. The format is CONSUL_ENV_<option_name>=<config_snippet>. Here are some examples to make it
clear:

docker run -e 'CONSUL_ENV_ui=true' -e 'CONSUL_ENV_watches=[{"type":"checks",
"handler":"/usr/bin/health-check-handler.sh"}]' -e 'CONSUL_ENV_datacenter="east-aws"'
ystia/yorc

Will result in the following configuration file:

{
"ui": true,
"watches": [{"type":"checks","handler":"/usr/bin/health-check-handler.sh"}],
"datacenter": "east-aws"

}

13.1.3 go-dnsmasq

go-dnsmasq is a lightweight DNS caching server/forwarder with minimal filesystem and runtime overhead. It is used
in this image to forward any *.consul dns request directly to Consul and forward others dns requests to your
standard upstream dns server. This allows to support dns resolving of Consul services out of the box.

13.1.4 Ansible & Terraform

Ansible and Terraform are installed in this image as described in the Yorc install section.

There is no specific configuration needed for those components.

13.1.5 Docker

The Docker client binary and the docker-py python library are installed in this image as described in the Yorc install
section.

They are necessary to support Orchestrator-hosted operations isolated in a Docker sandbox.

In order to let Yorc run Docker containers you should either expose the Docker service of your host in TCP and
configure Yorc to use this endpoint or mount the Docker socket into the container (recommended).

Here is the command line that allows to mount the Docker socket into the Yorc container:

76 Chapter 13. Run Yorc in a docker container

https://www.consul.io/docs/agent/options.html#_bootstrap_expect
https://www.ansible.com/
https://www.terraform.io/

Yorc Documentation, Release 4.0.1

Using the --mount flag (recommended way on Docker 17.06+)
docker run --mount "type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock"
→˓ystia/yorc
Using the -v flag (for Docker < 17.06)
docker run -v /var/run/docker.sock:/var/run/docker.sock ystia/yorc

13.1.6 Yorc

The Yorc binary is installed in this image as described in the Yorc install section.

Yorc is run as a yorc (group yorc) user. This user’s home directory is /var/yorc and the yorc process is run
within that directory. Yorc’s plugins can be added using a mount within the /var/yorc/plugins directory.

Configuring Yorc

To configure Yorc you can either mount a config.yorc.[json|yaml] into the /etc/yorc directory or use
Yorc standard environment variables (for both cases see Yorc Server Configuration section)

13.1. Image components 77

Yorc Documentation, Release 4.0.1

78 Chapter 13. Run Yorc in a docker container

CHAPTER 14

Yorc Telemetry

Yorc collects various runtime metrics. These metrics are aggregated on a ten second interval and are retained for one
minute.

To view this data, you must send a signal to the Yorc process: on Unix, this is USR1 while on Windows it is BREAK.
Once Yorc receives the signal, it will dump the current telemetry information to stderr.

Telemetry information can be streamed to both statsite as well as statsd or pull from Prometheus based on providing
the appropriate configuration options. See Telemetry configuration for more information.

Below is sample output (lot of metrics omitted for brevity) of a telemetry dump:

[2020-01-06 16:31:00 +0200 CEST][G] 'yorc.runtime.alloc_bytes': 73723728.000
[2020-01-06 16:31:00 +0200 CEST][G] 'yorc.workers.free': 2.000
[2020-01-06 16:31:00 +0200 CEST][C] 'yorc.http.GET.metrics.200': Count: 2 Sum: 2.000
→˓LastUpdated: 2020-01-06 16:31:06.253380804 +0200 CEST
[2020-01-06 16:31:00 +0200 CEST][S] 'yorc.tasks.maxBlockTimeMs': Count: 10 Sum: 0.000
→˓LastUpdated: 2020-01-06 16:31:09.805073861 +0200 CEST
[2020-01-06 16:31:00 +0200 CEST][S] 'yorc.http.duration.GET.events': Count: 2 Min: 27.
→˓765 Mean: 29.474 Max: 31.183 Stddev: 2.417 Sum: 58.948 LastUpdated: 2020-01-06
→˓16:31:06.253392224 +0200 CEST
[2020-01-06 16:31:00 +0200 CEST][S] 'yorc.http.duration.GET.server/health': Count: 10
→˓Min: 27.765 Mean: 21.274 Max: 32.193 Stddev: 1.527 Sum: 65.848 LastUpdated: 2020-01-
→˓06 16:31:06.2557253638 +0200 CEST
[2020-01-06 16:31:10 +0200 CEST][S] 'yorc.tasks.maxBlockTimeMs': Count: 10 Sum: 0.000
→˓LastUpdated: 2020-01-06 16:31:19.986227315 +0200 CEST

Another exemple in which the telemetry service configuration property disable_hostname is set to false and the
host name is yorc-server-0:

[2020-01-06 16:31:00 +0200 CEST][G] 'yorc.yorc-server-0.runtime.alloc_bytes':
→˓73723728.000
[2020-01-06 16:31:00 +0200 CEST][G] 'yorc.yorc-server-0.workers.free': 2.000

79

Yorc Documentation, Release 4.0.1

14.1 Key metrics

14.1.1 Metric Types

Type Description Quan-
tiles

Gauge Gauge types report an absolute number at the end of the aggregation interval. false
Counter Counts are incremented and flushed at the end of the aggregation interval and then are reset

to zero.
true

Timer Timers measure the time to complete a task and will include quantiles, means, standard devi-
ation, etc per interval.

true

14.1.2 Go Runtime metrics

Metric Name Description Unit Metric
Type

yorc.runtime.
num_goroutines

This tracks the number of running goroutines and is a general
load pressure indicator. This may burst from time to time but
should return to a steady state value.

number of
goroutines

gauge

yorc.runtime.
alloc_bytes

This measures the number of bytes allocated by the Yorc process.
This may burst from time to time but should return to a steady
state value.

bytes gauge

yorc.runtime.
heap_objects

This measures the number of objects allocated on the heap and is
a general memory pressure indicator. This may burst from time
to time but should return to a steady state value.

number of
objects

gauge

yorc.runtime.
sys

Sys is the total bytes of memory obtained from the OS.Sys mea-
sures the virtual address space reserved by the Go runtime for the
heap, stacks, and other internal data structures. It’s likely that not
all of the virtual address space is backed by physical memory at
any given moment, though in general it all was at some point.

bytes gauge

yorc.runtime.
malloc_count

Mallocs is the cumulative count of heap objects allocated. The
number of live objects is Mallocs - Frees.

number of
Mallocs

gauge

yorc.runtime.
free_count

Frees is the cumulative count of heap objects freed. number of
frees

gauge

yorc.runtime.
total_gc_pause_ns

PauseTotalNs is the cumulative nanoseconds in GC stop-the-
world pauses since the program started. During a stop-the-world
pause, all goroutines are paused and only the garbage collector
can run.

nanoseconds gauge

yorc.runtime.
total_gc_runs

Gc runs is the number of completed GC cycles. number of
cycles

gauge

yorc.runtime.
gc_pause_ns

Latest GC run stop-the-world pause duration. nanoseconds timer

14.1.3 Yorc REST API metrics

The method label represents the HTTP verb. The path label corresponds to the request URL. The status label
represents a HTTP status codes (ie: 200, 404, 500, . . .) if a status code is set in the response header.

80 Chapter 14. Yorc Telemetry

Yorc Documentation, Release 4.0.1

Metric Name Labels Description Unit Metric
Type

yorc.http.
duration

method path This measures the duration of an
API call.

milliseconds timer

yorc.http.total method path
status

This counts the number of API calls number of re-
quests

counter

14.1.4 Yorc Workers metrics

Metric Name Description Unit Metric
Type

yorc.workers.
free

This tracks the number of free Yorc workers. number of free workers gauge

14.1.5 Yorc TaskExecution metrics

Metric Name Labels Description Unit Met-
ric
Type

yorc.
taskExecutions.
nbWaiting

Tracks the number of taskExecutions
waiting for being processed

number of
waiting taskExe-
cutions

gauge

yorc.
taskExecution.
total

Deployment
Type TaskID
Status

Counts the number of terminated
taskExecutions

number of ended
taskExecutions

counter

yorc.
taskExecution.
duration

Deployment
Type TaskID

Measures a taskExecution’s process-
ing duration

milliseconds timer

yorc.
taskExecution.
wait

Deployment
Type TaskID

Measures the time waited by a
taskExecution before being pro-
cessed

milliseconds timer

The Deployment label is set to the deployment ID of the monitored taskExecution.

The Type label corresponds to the taskExecution type (Deploy, Undeploy, Purge, ScaleOut, ScaleIn,
CustomCommand, CustomWorkflow, Query, Action, ForcePurge, AddNodes, RemoveNodes).

The TaskID label is set to the task ID of the taskExecution.

The Status label gives the status in which the taskExecution ended.

14.1.6 Yorc Executors metrics

There are two types of executors in Yorc: delegate executors and operation executors. Delegate executors
handle the deployment of Yorc natively supported TOSCA nodes (like an OpenStack compute for instance). Operation
executors handle implementations of an lifecycle operation provided as part of the TOSCA node definition (like a shell
script or an ansible playbook).

In the below table <ExecType> is the executor type (operation or delegate).

14.1. Key metrics 81

Yorc Documentation, Release 4.0.1

Metric Name Labels Description Unit Metric
Type

yorc.executor.
<ExecType>.duration

Deployment
Node Name

This measures the duration of
an execution.

milliseconds timer

yorc.executor.
<ExecType>.failures

Deployment
Node Name

Counts the number of failed
executions.

number of
failures

counter

yorc.executor.
<ExecType>.successes

Deployment
Node Name

Counts the number of suc-
cessful executions.

number of
successes

counter

The Deployment label is set to the deployment ID, and the Node label is set to the fully qualified TOSCA node type
where dots were replaced by dashes. The Name label is set to the TOSCA operation name where dots were replaced
by dashes.

14.1.7 Yorc Actions scheduling metrics

Metric Name Labels Description Unit Met-
ric
Type

yorc.
scheduling.
ticks

ActionType
ActionID

Counts the number of action schedulings. number of
schedules

counter

yorc.
scheduling.
misses

ActionType
ActionID
TaskID

Counts the number of missed trigger due to an-
other execution already planned or running

number of
missed sched-
ules

counter

If an action schedule misses because another task is already executing it, the TaskID label contains this task’s ID.

14.1.8 Yorc SSH connection pool

Metric Name Description Unit Metric
Type

yorc.
ssh-connections-pool.
creations

This measures the number of cre-
ated connections.

number of connection counter

yorc.
ssh-connections-pool.
create-failed

This measures the number of failed
create connections.

number of connection
create failures

counter

yorc.
ssh-connections-pool.
closes

This measures the number of closed
connections.

number of close counter

Measures about the utilisation of sessions related to ssh connections.

82 Chapter 14. Yorc Telemetry

Yorc Documentation, Release 4.0.1

Metric Name Labels Description Unit Met-
ric
Type

yorc.
ssh-connections-pool.
sessions.creations

Con-
nec-
tion-
Name

This measures the number of sessions created for
a given connection.

number of
open

counter

yorc.
ssh-connections-pool.
sessions.closes

Con-
nec-
tion-
Name

This measures the number of sessions closed for
a given connection.

number of
close

counter

yorc.
ssh-connections-pool.
sessions.
open-failed

Con-
nec-
tion-
Name

This tracks the number of failures when opening
an SSH session (multiplexed on top of an exist-
ing connection).

number of
open fail-
ures

counter

yorc.
ssh-connections-pool.
sessions.open

Con-
nec-
tion-
Name

This tracks the number of currently open ses-
sions per connection

number of
sessions

gauge

14.1. Key metrics 83

Yorc Documentation, Release 4.0.1

84 Chapter 14. Yorc Telemetry

CHAPTER 15

Performance

15.1 Consul Storage

Yorc heavily relies on Consul to synchronize Yorc instances and store configurations, runtime data and TOSCA data
models. This leads to generate an important load pressure on Consul, under specific circumstances (thousands of
deployments having each an high number of TOSCA types and templates and poor latency performances on networks
between Yorc and Consul server). You may experience some performance issues specially during the initialization
phase of a deployment, when Yorc stores most of the data into Consul. To deal with this issues we recommend to
carefully read the Consul documentation on performance and update the default configuration if needed.

You can find below some configuration options that could be adapted to fit your specific use case:

• Yorc stores keys into Consul in highly parallel way. To prevent consuming too much connections and specially
getting into a max open file descriptor issue we use a mechanism that limits the number of open
connections to Consul. The number open connections can be set using consul_publisher_max_routines. The
default value of 500 was determined empirically to fit the default 1024 maximum number of open file descrip-
tors. Increasing this value could improve performances but you should also update accordingly the maximum
number of open file descriptors.

• Yorc 3.2 brings an experimental feature that allows to pack some keys storage into Consul transactions.
This mode is not enabled by default and can be activated by setting the environment variable named
YORC_CONSUL_STORE_TXN_TIMEOUT to a valid Go duration. Consul transactions can contain up to 64
operations, YORC_CONSUL_STORE_TXN_TIMEOUT defines a timeout after which we stop waiting for new
operations to pack into a single transaction and submit it as it to Consul. We had pretty good results by setting
this property to 10ms. This feature may become the default in the future after being tested against different use
cases and getting some feedback from production deployments.

Yorc 4.0 comes with more flexibility around storage and Consul KV use:

• Data has been wrapped in JSON to reduce the number of keys stored.

• Deployment description data is stored in a file with cache storage system by default.

• Log and Event data are still stored by default in Consul but they can also be stored in the file system with custom
configuration as explained here Storage configuration.

85

https://www.consul.io/docs/install/performance.html
https://www.consul.io/api/txn.html
https://golang.org/pkg/time/#ParseDuration

Yorc Documentation, Release 4.0.1

• Storing deployment, log and event data in other stores than Consul KV reduces considerably the memory con-
sumed by Consul.

• Deployment storage itself is faster according to the Distributed File System used in HA mode and its perfor-
mances. For a local file system in dev mode, it’s about 15 times faster.

15.2 TOSCA Operations

As described in TOSCA Supported Operations implementations, Yorc supports these builtin implementations for
operations to execute on remote hosts :

• Bash scripts

• Python scripts

• Ansible Playbooks

It is recommended to implement operations as Ansible Playbooks to get the best execution performance.

When operations are not implemented using Ansible playbooks, the following Yorc Server Ansible configuration
settings allow to improve the performance of scripts execution on remote hosts :

• use_openssh: Prefer OpenSSH over Paramiko, a Python implementation of SSH (used by default) to pro-
vision remote hosts. OpenSSH have several optimization like reusing connections that should improve perfor-
mance but may lead to issues on older systems See Ansible documentation on Remote connection information.

• cache_facts: Caches Ansible facts (values fetched on remote hosts about net-
work/hardware/OS/virtualization configuration) so that these facts are not recomputed each time a new
operation is a run for a given deployment.

• archive_artifacts: Archives operation bash/python scripts locally, copies this archive and unarchives it
on remote hosts (requires tar to be installed on remote hosts), to avoid multiple time consuming remote copy
operations of individual scripts.

86 Chapter 15. Performance

https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html#remote-connection-information
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#fact-caching

CHAPTER 16

Upgrades

Upgrades of Yorc that preserve already deployed applications are available starting with Yorc 3.1.0. It is safe to
upgrade from Yorc 3.0.0 but upgrading from previous releases can lead to unpredictable results.

An upgrade leads to a service interruption. Currently the standard process is to stop all running instances of Yorc.
Upgrade dependencies like Consul, Terraform, Ansible for instance, then upgrade Yorc itself and restart it. Yorc will
automatically take care of upgrading its database schema by its own from version 3.0.0 up to its current version.

By default Yorc takes a snapshot of the Consul database before upgrading and automatically rollback to this snap-
shot if an error occurs during the upgrade process. If you are running Consul with ACL enabled the snapshot
and restore feature requires to have the management ACL. It is possible to disable this feature by setting the
YORC_DISABLE_CONSUL_SNAPSHOTS_ON_UPGRADE environment variable to 1 or true.

Note: A rolling upgrade without interruption feature is planned for future versions.

16.1 Upgrading to Yorc 3.2.0

16.1.1 Ansible

Although Yorc 3.2.0 can still work with Ansible 2.7.2, security vulnerabilities were identified in this Ansible version.

So, it is strongly advised to upgrade Ansible to version 2.7.9:

sudo pip install ansible==2.7.9

87

Yorc Documentation, Release 4.0.1

16.2 Upgrading to Yorc 3.1.0

16.2.1 Ansible

Ansible needs to be upgraded to version 2.7.2, run the following command to do it:

sudo pip install ansible==2.7.2

16.2.2 Terraform

Terraform needs to be upgraded to version 0.11.8. Moreover this version comes with a new packaging where providers
are not shipped anymore in the main binary. So you also need to download them separately.

Install the new Terraform version
wget https://releases.hashicorp.com/terraform/0.11.8/terraform_0.11.8_linux_amd64.zip
sudo unzip terraform_0.11.8_linux_amd64.zip -d /usr/local/bin

Now install Terraform plugins
sudo mkdir -p /var/terraform/plugins

wget https://releases.hashicorp.com/terraform-provider-consul/2.1.0/terraform-
→˓provider-consul_2.1.0_linux_amd64.zip
sudo unzip terraform-provider-consul_2.1.0_linux_amd64.zip -d /var/terraform/plugins

wget https://releases.hashicorp.com/terraform-provider-null/1.0.0/terraform-provider-
→˓null_1.0.0_linux_amd64.zip
sudo unzip terraform-provider-null_1.0.0_linux_amd64.zip -d /var/terraform/plugins

wget https://releases.hashicorp.com/terraform-provider-aws/1.36.0/terraform-provider-
→˓aws_1.36.0_linux_amd64.zip
sudo unzip terraform-provider-aws_1.36.0_linux_amd64.zip -d /var/terraform/plugins

wget https://releases.hashicorp.com/terraform-provider-google/1.18.0/terraform-
→˓provider-google_1.18.0_linux_amd64.zip
sudo unzip terraform-provider-google_1.18.0_linux_amd64.zip -d /var/terraform/plugins

wget https://releases.hashicorp.com/terraform-provider-openstack/1.9.0/terraform-
→˓provider-openstack_1.9.0_linux_amd64.zip
sudo unzip terraform-provider-openstack_1.9.0_linux_amd64.zip -d /var/terraform/
→˓plugins

sudo chmod 775 /var/terraform/plugins/*

16.2.3 Consul

Consul needs to be upgraded to version 1.2.3, run the following command to do it:

wget https://releases.hashicorp.com/consul/1.2.3/consul_1.2.3_linux_amd64.zip
sudo unzip consul_1.2.3_linux_amd64.zip -d /usr/local/bin

Then restart Consul.

The recommended way to upgrade Consul is to perform a rolling upgrade. See Consul documentation for details.

88 Chapter 16. Upgrades

https://www.consul.io/docs/upgrading.html

CHAPTER 17

Yorc Plugins (Advanced)

Yorc exposes several extension points. This section covers the different ways to extend Yorc and how to create a
plugin.

Note: This is an advanced section! If you are looking for information on how to use Yorc or on existing plugins
please refer to our main documentation

17.1 Yorc extension points

Yorc offers several extension points. The way to provide extensions is to load plugins within Yorc. Those plugins
could be use to enrich Yorc or to override Yorc builtin implementations. If there is an overlap between a Yorc builtin
implementation and an implementation provided by a plugin the plugin implementation will be preferred.

17.1.1 TOSCA Definitions

One way to extend Yorc is to provide some TOSCA definitions. Those definitions could be used directly within
deployed applications by importing them using the diamond syntax without providing them into the CSAR:

imports:
- this/is/a/standard/import/to/an/existing/file/within/csar.yaml
- <my-custom-definition.yaml>
- <normative-types.yml>

Both two latest imports are taken directly from Yorc not within the CSAR archive.

17.1.2 Delegate Executors

Some nodes lifecycle could be delegated to Yorc. In this case a workflow does not contain set_state and
call_operation activities. Their workflow is considered as “delegate” and acts as a black-box between the initial

89

Yorc Documentation, Release 4.0.1

and started state in the install workflow and the started to deleted states in the uninstall workflow.

Those kind of executors are typically designed to handle infrastructure types.

You can extend Yorc by adding new implementations that will handle delegate operations for selected TOSCA types.
For those extensions you match a regular expression on the TOSCA type name to a delegate operation. For instance
you can match all delegate operations on type named my\.custom\.azure\..*.

17.1.3 Operation Executors

Those kind of executors handle call_operation activities.

In TOSCA operations are defined by their “implementation artifact”. With a plugin you can register an operation
executor for any implementation artifact.

Those executors are typically designed to handle new configuration managers like chef or puppet for instance.

17.1.4 Action Operators

Action Operators handle the execution of asynchronous operations. These executors are typically designed to handle
the monitoring of a job state.

17.1.5 Infrastructure Usage Collector

An infrastructure usage collector allows to retrieve information on underlying infrastructures like quota usage or cluster
load.

You can register a collector for several infrastructures.

17.2 How to create a Yorc plugin

Yorc supports a plugin model, plugins are distributed as Go binaries. Although technically possible to write a plugin
in another language, plugin written in Go are the only implementations officially supported and tested. For more
information on installing and configuring Go, please visit the Golang installation guide. Yorc and plugins require at
least Go 1.11.

This sections assumes familiarity with Golang and basic programming concepts.

17.2.1 Initial setup and dependencies

Starting with Yorc 3.2 the official way to handle dependencies is Go modules. This guide will use Go modules to
handle dependencies and we recommend to do the same with your plugin.

You can store your code anywhere but if you store it into your GOPATH you need the
→˓following line
$ export GO111MODULE=on
$ mkdir my-custom-plugin ; cd my-custom-plugin
$ go mod init github.com/my/custom-plugin
go: creating new go.mod: module github.com/my/custom-plugin
$ go get -m github.com/ystia/yorc/v4@v4.0.0-M1
$ touch main.go

90 Chapter 17. Yorc Plugins (Advanced)

https://golang.org/doc/install
https://github.com/golang/go/wiki/Modules

Yorc Documentation, Release 4.0.1

17.2.2 Building the plugin

Go requires a main.go file, which is the default executable when the binary is built. Since Yorc plugins are distributed
as Go binaries, it is important to define this entry-point with the following code:

package main

import (
"github.com/ystia/yorc/v4/plugin"

)

func main() {
plugin.Serve(&plugin.ServeOpts{})

}

This establishes the main function to produce a valid, executable Go binary. The contents of the main function
consumes Yorc’s plugin library. This library deals with all the communication between Yorc and the plugin.

Next, build the plugin using the Go toolchain:

$ go build -o my-custom-plugin

To verify things are working correctly, execute the binary just created:

$./my-custom-plugin
This binary is a plugin. These are not meant to be executed directly.
Please execute the program that consumes these plugins, which will
load any plugins automatically

17.2.3 Load custom TOSCA definitions

You can instruct Yorc to make available some TOSCA definitions as builtin into Yorc. To do so you need to get the
definition content using the way you want. For simplicity we will use a simple go string variable in the below example.
Then you need to update ServeOpts in your main function.

package main

import (
"github.com/ystia/yorc/v4/plugin"

)

var def = []byte(`tosca_definitions_version: yorc_tosca_simple_yaml_1_0

metadata:
template_name: yorc-my-types
template_author: Yorc
template_version: 1.0.0

imports:
- <normative-types.yml>

artifact_types:
mytosca.artifacts.Implementation.MyImplementation:
derived_from: tosca.artifacts.Implementation
description: My dummy implementation artifact
file_ext: ["myext"]

(continues on next page)

17.2. How to create a Yorc plugin 91

Yorc Documentation, Release 4.0.1

(continued from previous page)

node_types:
mytosca.types.Compute:
derived_from: tosca.nodes.Compute

`)

func main() {
plugin.Serve(&plugin.ServeOpts{
Definitions: map[string][]byte{
"mycustom-types.yml": def,

},
})

}

17.2.4 Implement a delegate executor

Now we will implement a basic delegate executor, create a file delegate.go and edit it with following content.

package main

import (
"context"
"log"

"github.com/ystia/yorc/v4/config"
"github.com/ystia/yorc/v4/deployments"
"github.com/ystia/yorc/v4/events"
"github.com/ystia/yorc/v4/locations"
"github.com/ystia/yorc/v4/tasks"
"github.com/ystia/yorc/v4/tosca"

)

type delegateExecutor struct{}

func (de *delegateExecutor) ExecDelegate(ctx context.Context, conf config.
→˓Configuration, taskID, deploymentID, nodeName, delegateOperation string) error {

// Here is how to retrieve location config parameters from Yorc
locationMgr, err := locations.GetManager(conf)
if err != nil {
return err

}
locationProps, err := locationMgr.GetLocationPropertiesForNode(deploymentID,

→˓nodeName, "my-plugin-location-type")
if err != nil {
return err

}
for _, k := locationProps.Keys() {

log.Printf("configuration key: %s", k)
}
log.Printf("Secret key: %q", locationProps.GetStringOrDefault("test", "not found!"))

// Get a consul client to interact with the deployment API
cc, err := conf.GetConsulClient()

(continues on next page)

92 Chapter 17. Yorc Plugins (Advanced)

Yorc Documentation, Release 4.0.1

(continued from previous page)

if err != nil {
return err

}
kv:= cc.KV()

// Get node instances related to this task (may be a subset of all instances for a
→˓scaling operation for instance)
instances, err := tasks.GetInstances(kv, taskID, deploymentID, nodeName)
if err != nil {
return err

}

// Emit events and logs on instance status change
for _, instanceName := range instances {
deployments.SetInstanceStateWithContextualLogs(ctx, kv, deploymentID, nodeName,

→˓instanceName, tosca.NodeStateCreating)
}

// Use the deployments api to get info about the node to provision
nodeType, err := deployments.GetNodeType(cc.KV(), deploymentID, nodeName)

// Emit a log or an event
events.WithContextOptionalFields(ctx).NewLogEntry(events.LogLevelINFO,

→˓deploymentID).Registerf("Provisioning node %q of type %q", nodeName, nodeType)

for _, instanceName := range instances {
deployments.SetInstanceStateWithContextualLogs(ctx, kv, deploymentID, nodeName,

→˓instanceName, tosca.NodeStateStarted)
}
return nil

}

Now you should instruct the plugin system that a new executor is available and which types it supports. This could be
done by altering again ServeOpts in your main function.

package main

import (
"github.com/ystia/yorc/v4/plugin"
"github.com/ystia/yorc/v4/prov"

)

// ... omitted for brevity ...

func main() {
plugin.Serve(&plugin.ServeOpts{
Definitions: map[string][]byte{

"mycustom-types.yml": def,
},
DelegateSupportedTypes: []string{`mytosca\.types\..*`},
DelegateFunc: func() prov.DelegateExecutor {
return new(delegateExecutor)

},
})

}

17.2. How to create a Yorc plugin 93

Yorc Documentation, Release 4.0.1

17.2.5 Implement an operation executor

An operation executor could be implemented exactly in the same way than a delegate executor, except that it need
to support two different functions, ExecOperation and ExecOperationAsync. The first one is the more
common use case while the latest is designed to handle asynchronous (non-blocking for long running) operations, like
jobs execution typically. In this guide we will focus on ExecOperation please read our documentation about jobs
for more details on asynchronous operations. You can create a operation.go file with following content.

package main

import (
"context"
"fmt"
"time"

"github.com/ystia/yorc/v4/config"
"github.com/ystia/yorc/v4/events"
"github.com/ystia/yorc/v4/prov"

)

type operationExecutor struct{}

func (oe *operationExecutor) ExecAsyncOperation(ctx context.Context, conf config.
→˓Configuration, taskID, deploymentID, nodeName string, operation prov.Operation,
→˓stepName string) (*prov.Action, time.Duration, error) {
return nil, 0, fmt.Errorf("asynchronous operations %v not yet supported by this

→˓sample", operation)
}

func (oe *operationExecutor) ExecOperation(ctx context.Context, cfg config.
→˓Configuration, taskID, deploymentID, nodeName string, operation prov.Operation)
→˓error {
events.WithContextOptionalFields(ctx).NewLogEntry(events.LogLevelINFO,

→˓deploymentID).RegisterAsString("Hello from my OperationExecutor")
// Your business logic goes there
return nil

}

Then you should instruct the plugin system that a new executor is available and which implementation artifacts it
supports. Again, this could be done by altering ServeOpts in your main function.

// ... omitted for brevity ...

func main() {
plugin.Serve(&plugin.ServeOpts{
Definitions: map[string][]byte{

"mycustom-types.yml": def,
},
DelegateSupportedTypes: []string{`mytosca\.types\..*`},
DelegateFunc: func() prov.DelegateExecutor {
return new(delegateExecutor)

},
OperationSupportedArtifactTypes: []string{"mytosca.artifacts.Implementation.

→˓MyImplementation"},
OperationFunc: func() prov.OperationExecutor {

return new(operationExecutor)
},

(continues on next page)

94 Chapter 17. Yorc Plugins (Advanced)

Yorc Documentation, Release 4.0.1

(continued from previous page)

})
}

17.2.6 Logging

Using the log standard library or Yorc log module github.com/ystia/yorc/v4/log in plugin code, log data from the plugin
will be automatically sent to the Yorc Server parent process. Yorc will parse these plugin logs to infer their log level
and filter them if these are debug messages and debug logging is disabled. It will then display messages, prefixed by
the plugin name and suffixed by the timestamp of their creation on the plugin.

Plugin log messages levels are inferred this way by Yorc Server :

• A message sent by the plugin using Yorc log module github.com/ystia/yorc/v4/log function log.Debug(),
log.Debugf() or log.Debugln() will have the level DEBUG, all other messages will have the level INFO on
Yorc server.

• A message sent by the plugin using the log standard library will have the level INFO, except if this message is
prefixed by one of these values: [DEBUG], [INFO], [WARN], [ERROR], in which case the message will have
the log level corresponding to this value on Yorc server.

See an example in next section of a plugin logs with debug logging enabled on Yorc server.

17.2.7 Using Your Plugin

First your plugin should be dropped into Yorc’s plugins directory before starting Yorc. Yorc’s plugins directory is
configurable but by default it’s a directory named plugins in the current directory when Yorc is launched.

By exporting an environment variable YORC_LOG=1 before running Yorc, plugin debug logs will be displayed, else
these debug logs will be filtered and other plugin logs will be displayed, as described in previous section.

Run consul in a terminal
$ consul agent -dev
Run Yorc in another terminal
$ mkdir plugins
$ cp my-custom-plugin plugins/
$ YORC_LOG=1 yorc server
...
2019/02/12 14:28:23 [DEBUG] Loading plugin "/tmp/yorc/plugins/my-custom-plugin"...
2019/02/12 14:28:23 [INFO] 30 workers started
2019/02/12 14:28:23 [DEBUG] plugin: starting plugin: /tmp/yorc/plugins/my-custom-
→˓plugin []string{"/tmp/yorc/plugins/my-custom-plugin"}
2019/02/12 14:28:23 [DEBUG] plugin: waiting for RPC address for: /tmp/yorc/plugins/my-
→˓custom-plugin
2019/02/12 14:28:23 [DEBUG] plugin: my-custom-plugin: 2019/02/12 14:28:23 [DEBUG]
→˓plugin: plugin address: unix /tmp/plugin262069315 timestamp=2019-02-12T14:28:23.499Z
2019/02/12 14:28:23 [DEBUG] plugin: my-custom-plugin: 2019/02/12 14:28:23 [DEBUG]
→˓Consul Publisher created with a maximum of 500 parallel routines. timestamp=2019-02-
→˓12T14:28:23.499Z
2019/02/12 14:28:23 [DEBUG] Registering supported node types [mytosca\.types\..*]
→˓into registry for plugin "my-custom-plugin"
2019/02/12 14:28:23 [DEBUG] Registering supported implementation artifact types
→˓[mytosca.artifacts.Implementation.MyImplementation] into registry for plugin "my-
→˓custom-plugin"
2019/02/12 14:28:23 [DEBUG] Registering TOSCA definition "mycustom-types.yml" into
→˓registry for plugin "my-custom-plugin"

(continues on next page)

17.2. How to create a Yorc plugin 95

Yorc Documentation, Release 4.0.1

(continued from previous page)

2019/02/12 14:28:23 [INFO] Plugin "my-custom-plugin" successfully loaded
2019/02/12 14:28:23 [INFO] Starting HTTPServer on address [::]:8800
...

Now you can create a dummy TOSCA application topology.yaml

tosca_definitions_version: alien_dsl_2_0_0

metadata:
template_name: TestPlugins
template_version: 0.1.0-SNAPSHOT
template_author: admin

imports:
- <mycustom-types.yml>

node_types:
my.types.Soft:
derived_from: tosca.nodes.SoftwareComponent
interfaces:

Standard:
create: dothis.myext

topology_template:
node_templates:
Compute:
type: mytosca.types.Compute
capabilities:
endpoint:
properties:

protocol: tcp
initiator: source
secure: true
network_name: PRIVATE

scalable:
properties:

max_instances: 5
min_instances: 1
default_instances: 2

Soft:
type: my.types.Soft

workflows:
install:
steps:

Compute_install:
target: Compute
activities:

- delegate: install
on_success:

- Soft_creating
Soft_creating:
target: Soft
activities:

- set_state: creating
on_success:

(continues on next page)

96 Chapter 17. Yorc Plugins (Advanced)

Yorc Documentation, Release 4.0.1

(continued from previous page)

- create_Soft
create_Soft:
target: Soft
activities:

- call_operation: Standard.create
on_success:

- Soft_created
Soft_created:
target: Soft
activities:

- set_state: created
on_success:

- Soft_started
Soft_started:
target: Soft
activities:

- set_state: started
uninstall:

steps:
Soft_deleted:
target: Soft
activities:

- set_state: deleted
on_success:

- Compute_uninstall
Compute_uninstall:

target: Compute
activities:

- delegate: uninstall

Finally you can deploy your application and see (among others) the following logs:

$ yorc d deploy -l --id my-app topology.yaml
<...>
[2019-02-12T16:51:55.207420877+01:00][INFO][my-app][install][5a7638e8-dde2-48e7-9e5a-
→˓89350ccd99a7][8f4b31da-8f27-456e-8c25-0520366bda30-
→˓0][Compute][0][delegate][install][]Status for node "Compute", instance "0" changed
→˓to "creating"
[2019-02-12T16:51:55.20966624+01:00][INFO][my-app][install][5a7638e8-dde2-48e7-9e5a-
→˓89350ccd99a7][8f4b31da-8f27-456e-8c25-0520366bda30-
→˓1][Compute][1][delegate][install][]Status for node "Compute", instance "1" changed
→˓to "creating"
[2019-02-12T16:51:55.211403476+01:00][INFO][my-app][install][5a7638e8-dde2-48e7-9e5a-
→˓89350ccd99a7][8f4b31da-8f27-456e-8c25-
→˓0520366bda30][Compute][][delegate][install][]Provisioning node "Compute" of type
→˓"mytosca.types.Compute"
[2019-02-12T16:51:55.213793985+01:00][INFO][my-app][install][5a7638e8-dde2-48e7-9e5a-
→˓89350ccd99a7][8f4b31da-8f27-456e-8c25-0520366bda30-
→˓0][Compute][0][delegate][install][]Status for node "Compute", instance "0" changed
→˓to "started"
[2019-02-12T16:51:55.215991445+01:00][INFO][my-app][install][5a7638e8-dde2-48e7-9e5a-
→˓89350ccd99a7][8f4b31da-8f27-456e-8c25-0520366bda30-
→˓1][Compute][1][delegate][install][]Status for node "Compute", instance "1" changed
→˓to "started"
<...>
[2019-02-12T16:51:55.384726783+01:00][INFO][my-app][install][5a7638e8-dde2-48e7-9e5a-
→˓89350ccd99a7][3d640a5a-3093-4c7b-83e4-
→˓c67e57a1c430][Soft][][standard][create][]Hello from my OperationExecutor(continues on next page)

17.2. How to create a Yorc plugin 97

Yorc Documentation, Release 4.0.1

(continued from previous page)

<...>
[2019-02-12T16:51:55.561607771+01:00][INFO][my-app][install][5a7638e8-dde2-48e7-9e5a-
→˓89350ccd99a7][][][][][][]Status for deployment "my-app" changed to "deployed"

Et voilà !

98 Chapter 17. Yorc Plugins (Advanced)

CHAPTER 18

Premium features

The following features are only available with Yorc premium. Please, contact us for more information on Premium
offer.

18.1 Providing scripts outputs live in Yorc logs

The open source version of Yorc now provides ansible playbooks logs for each task once the task is finished. Scripts
outputs are still provided in Yorc logs at the end of the script execution. The premium version of Yorc will provide
scripts stdout and stderr live in Yorc logs, so that scripts having a long execution time can be monitored from Yorc
through their output.

18.2 Deployment update

It’s possible to update a deployed topology by making the following actions in the topology.

18.2.1 Add/remove/update workflows

This feature allows to add new workflows, remove or modify existing ones that can be run as custom workflowq or
during the application lifecycle workflows (install/start/stop/uninstall).

18.2.2 Add/remove/update monitoring policies

HTTP and TCP monitoring policies can be applied on an application in order to monitor Software components or
Compute instances liveness. See https://yorc-a4c-plugin.readthedocs.io/en/latest/policies.html for more information.

With the Premium version, you can add new monitoring policies on a deployed application if you miss it when you
deploy the app. You can also modify or remove existing monitoring policies on a deployed application if your needs
changed. By instance, you can increase or decrease the monitoring time interval.

99

https://yorc-a4c-plugin.readthedocs.io/en/latest/policies.html

Yorc Documentation, Release 4.0.1

18.2.3 Update TOSCA types

This feature allows to update imported Tosca types either in the same version or in a new version in order to support
new attributes, properties or even operations. By instance, mixed with a new custom workflow, this allows to execute
new operations.

18.2.4 Add/remove nodes

This feature allows to add new node templates in a deployed topology or to remove existing ones. In the first imple-
mentation, it’s not possible to mix adds and removes in the same update, you need to do it in different updates.

100 Chapter 18. Premium features

CHAPTER 19

Known issues

19.1 BER for SSH private key is not supported

Yorc uses SSH to connect to provisioned Computes or to hosts from hosts pool.

Default behavior is to add related private keys to SSH-agent in order to handle authentication.

But in some cases, SSH-agent can’t be used and authentication must be done with private key file with the –dis-
able_ssh_agent command-line flag

As we use Golang ssh package (https://godoc.org/golang.org/x/crypto/ssh) to parse the private key, we don’t support
BER encoding format (https://github.com/golang/go/issues/14145). This kind of format is especially used by Open-
Stack Liberty SSH keypair generator.

101

https://godoc.org/golang.org/x/crypto/ssh
https://github.com/golang/go/issues/14145

	Install Yorc and requirements
	Typical Yorc deployment for OpenStack
	Host requirements
	Packages installation
	Final setup

	Bootstrap a full stack installation
	Prerequisites
	Bootstrap process overview
	Bootstrapping the setup in interactive mode
	Bootstrapping the setup using command line options
	Bootstrapping the setup using environment variables
	Bootstrapping the setup using a configuration file
	Exporting and loading an interactive configuration file

	Troubleshooting
	Yorc Server Configuration
	Globals Command-line options
	Configuration files
	Environment variables
	Locations configuration
	Builtin locations types configuration
	Storage configuration
	Vault configuration
	Builtin Vaults configuration

	Yorc Client CLI Configuration
	Command-line options
	Configuration files
	Environment variables

	Starting Yorc
	Starting Consul
	Starting Yorc

	Yorc Command Line Interface
	General Options
	CLI Commands related to deployments
	CLI Commands related to locations
	CLI Commands related to hosts pool

	Yorc Supported infrastructures
	Hosts Pool
	Slurm
	Google Cloud Platform
	AWS
	OpenStack
	Kubernetes

	TOSCA support in Yorc
	TOSCA Operations

	Run Yorc in Secured mode
	Generate SSL certificates with SAN
	Secured Consul cluster Setup
	Secured Yorc Setup
	Secured Yorc CLI Setup
	Setup Alien4Cloud security

	Integrate Yorc with a Vault
	HashiCorp’s Vault integration

	Run Yorc in High Availability (HA) mode
	High level view of a typical HA installation
	Yorc HA setup

	Run Yorc in a docker container
	Image components

	Yorc Telemetry
	Key metrics

	Performance
	Consul Storage
	TOSCA Operations

	Upgrades
	Upgrading to Yorc 3.2.0
	Upgrading to Yorc 3.1.0

	Yorc Plugins (Advanced)
	Yorc extension points
	How to create a Yorc plugin

	Premium features
	Providing scripts outputs live in Yorc logs
	Deployment update

	Known issues
	BER for SSH private key is not supported

