

Yorc 3.0.2 Documentation

	Install Yorc and requirements
	Typical Yorc deployment for OpenStack

	Host requirements

	Packages installation

	Final setup

	Yorc Server Configuration
	Globals Command-line options

	Configuration files

	Environment variables

	Infrastructures configuration

	Builtin infrastructures configuration

	Vault configuration

	Builtin Vaults configuration

	Yorc Client CLI Configuration
	Command-line options

	Configuration files

	Environment variables

	Starting Yorc
	Starting Consul

	Starting Yorc

	Yorc Command Line Interface
	General Options

	CLI Commands related to deployments

	CLI Commands related to hosts pool

	Yorc Supported infrastructures
	Hosts Pool

	Slurm

	Google Cloud Platform

	AWS

	OpenStack

	Kubernetes

	TOSCA support in Yorc
	TOSCA Operations

	Run Yorc in Secured mode
	Generate SSL certificates with SAN

	Secured Consul cluster Setup

	Secured Yorc Setup

	Secured Yorc CLI Setup

	Setup Alien4Cloud security

	Integrate Yorc with a Vault
	HashiCorp’s Vault integration

	Run Yorc in High Availability (HA) mode
	High level view of a typical HA installation

	Yorc HA setup

	Run Yorc in a docker container
	Image components

	Yorc Telemetry
	Key metrics

	Performance
	TOSCA Operations

Install Yorc and requirements

Typical Yorc deployment for OpenStack

In order to provision softwares on virtual machines that do not necessary have a floating IP we recommend to install Yorc itself on a virtual machine
in your OpenStack tenant. Alien4Cloud and the Alien4Cloud Yorc Plugin (see their dedicated documentation to know how to install them) may be collocated
on the same VM or resides in a different VM.

Virtual Machines created by Yorc should be connected to the same private network as the Yorc VM (the –infrastructure_openstack_private_network_name
configuration flag allows to do it automatically). In order to provision Floating IPs, this private network should be connected to the public network
of the tenant through a router.

[image: Typical Yorc deployment for OpenStack]

Host requirements

Yorc requires a Linux x86_64 system to operate with at least 2 CPU and 2 Go of RAM.

Packages installation

	Following packages are required to perform the installation:

	
	python

	python-pip

	zip/unzip

	openssh-client

	wget

Now you can proceed with the installation of softwares used by Yorc.

sudo pip install ansible==2.4.1.0
wget https://releases.hashicorp.com/consul/1.0.6/consul_1.0.6_linux_amd64.zip
sudo unzip consul_1.0.6_linux_amd64.zip -d /usr/local/bin
wget https://releases.hashicorp.com/terraform/0.9.11/terraform_0.9.11_linux_amd64.zip
sudo unzip terraform_0.9.11_linux_amd64.zip -d /usr/local/bin

Finally you can install the Yorc binary into /usr/local/bin.

To support Orchestrator-hosted operations sandboxed into Docker containers the following
softwares should also be installed.

for apt based distributions
sudo apt install Docker
for yum based distributions
sudo yum install Docker
Docker should be running and configured to works with http proxies if any
sudo systemctl enable docker
sudo systemctl start docker

sudo pip install docker-py

For a complete Ansible experience please install the following python libs:

To support json_query filter for jinja2
sudo pip install jmespath
To works easily with CIDRs
sudo pip install netaddr

To support Ansible SSH password authentication instead of common ssh keys, the sshpass helper program needs to be installed too.

for apt based distributions
sudo apt install sshpass
for yum based distributions
sudo yum install sshpass

Final setup

In order to provision softwares through ssh, you need to store the ssh private key that will be used to connect to the nodes under
$HOME/.ssh/yorc.pem where $HOME is the home directory of the user running Yorc. This key should part of the authorized keys on remote hosts.
Generally, for OpenStack, it corresponds to the private key of the keypair used to create the instance.

Note

A common issue is to create a key file that does not comply the ssh requirements for private keys (should be readable by the user but not
accessible by group/others read/write/execute).

Yorc Server Configuration

Yorc has various configuration options that could be specified either by command-line flags, configuration file or environment variables.

If an option is specified several times using flags, environment and config file, command-line flag will have the precedence then the environment variable and finally the value defined in the configuration file.

Globals Command-line options

	--ansible_use_openssh: Prefer OpenSSH over Paramiko a Python implementation of SSH (the default) to provision remote hosts. OpenSSH have several optimization like reusing connections that should improve preformance but may lead to issues on older systems.

	--ansible_debug: Prints massive debug information from Ansible especially about connections

	--ansible_connection_retries: Number of retries in case of Ansible SSH connection failure.

	--ansible_cache_facts: If set to true, caches Ansible facts (values fetched on remote hosts about network/hardware/OS/virtualization configuration) so that these facts are not recomputed each time a new operation is a run for a given deployment (false by default: no caching).

	--ansible_archive_artifacts: If set to true, archives operation bash/python scripts locally, copies this archive and unarchives it on remote hosts (requires tar to be installed on remote hosts), to avoid multiple time consuming remote copy operations of individual scripts (false by default: no archive).

	--ansible_keep_generated_recipes: If set to true, generated Ansible recipes on Yorc server are not deleted. (false by default: generated recipes are deleted).

	--operation_remote_base_dir: Specify an alternative working directory for Ansible on provisioned Compute.

	--config or -c: Specify an alternative configuration file. By default Yorc will look for a file named config.yorc.json in /etc/yorc directory then if not found in the current directory.

	--consul_address: Specify the address (using the format host:port) of Consul. Consul default is used if not provided.

	--consul_token: Specify the security token to use with Consul. No security token used by default.

	--consul_datacenter: Specify the Consul’s datacenter to use. Consul default (dc1) is used by default.

	--consul_key_file: Specify the Consul client’s key to use when commuicating over TLS.

	--consul_cert_file: Specify the Consul client’s certificate to use when commuicating over TLS.

	--consul_ca_cert: Specify the CA used to sign Consul certificates.

	--consul_ca_path: Specify the path to the CA used to sign Consul certificates

	--consul_ssl: If set to true, enable SSL (false by default).

	--consul_ssl_verify: If set to false, disable Consul certificate checking (true by default is ssl enabled).

	--terraform_keep_generated_files: If set to true, generated Terraform infrastructures files on Yorc server are not deleted. (false by default: generated files are deleted).

	--consul_publisher_max_routines: Maximum number of parallelism used to store key/values in Consul. If you increase the default value you may need to tweak the ulimit max open files. If set to 0 or less the default value (500) will be used.

	--graceful_shutdown_timeout: Timeout to wait for a graceful shutdown of the Yorc server. After this delay the server immediately exits. The default is 5m.

	--wf_step_graceful_termination_timeout: Timeout to wait for a graceful termination of a workflow step during concurrent workflow step failure. After this delay the step is set on error. The default is 2m.

	--http_address: Restrict the listening interface for the Yorc HTTP REST API. By default Yorc listens on all available interfaces

	--http_port: Port number for the Yorc HTTP REST API. If omitted or set to ‘0’ then the default port number is used, any positive integer will be used as it, and finally any negative value will let use a random port.

	--keep_operation_remote_path: If set to true, do not delete temporary artifacts on provisioned Compute at the end of deployment (false by default for deployment temporary artifacts cleanup).

	--key_file: File path to a PEM-encoded private key. The key is used to enable SSL for the Yorc HTTP REST API. This must be provided along with cert_file. If one of key_file or cert_file is not provided then SSL is disabled.

	--cert_file: File path to a PEM-encoded certificate. The certificate is used to enable SSL for the Yorc HTTP REST API. This must be provided along with key_file. If one of key_file or cert_file is not provided then SSL is disabled.

	--ca_file: If set to true, enable TLS certificate checking. Must be provided with cert_file ; key_file and ca_file. Disabled by default.

	--ssl_verify: If set to true, enable TLS certificate checking for clients of the Yorc’s API. Must be provided with cert_file ; key_file and ca_file. Disabled by default.

	--plugins_directory: The name of the plugins directory of the Yorc server. The default is to use a directory named plugins in the current directory.

	--resources_prefix: Specify a prefix that will be used for names when creating resources such as Compute instances or volumes. Defaults to yorc-.

	--workers_number: Yorc instances use a pool of workers to handle deployment tasks. This option defines the size of this pool. If not set the default value of 3 will be used.

	--working_directory or -w: Specify an alternative working directory for Yorc. The default is to use a directory named work in the current directory.

	--server_id: Specify the server ID used to identify the server node in a cluster. The default is server_0.

Configuration files

Configuration files are either JSON or YAML formatted as a single object containing the following configuration options.
By default Yorc will look for a file named config.yorc.json in /etc/yorc directory then if not found in the current directory.
The –config command line flag allows to specify an alternative configuration file.

Below is an example of configuration file.

{
 "resources_prefix": "yorc1-",
 "infrastructures": {
 "openstack": {
 "auth_url": "http://your-openstack:5000/v2.0",
 "tenant_name": "your-tenant",
 "user_name": "os-user",
 "password": "os-password",
 "private_network_name": "default-private-network",
 "default_security_groups": ["default"]
 }
 }
}

Below is an example of configuration file with TLS enabled.

{
 "resources_prefix": "yorc1-",
 "key_file": "/etc/pki/tls/private/yorc.key",
 "cert_file": "/etc/pki/tls/certs/yorc.crt",
 "infrastructures": {
 "openstack": {
 "auth_url": "http://your-openstack:5000/v2.0",
 "tenant_name": "your-tenant",
 "user_name": "os-user",
 "password": "os-password",
 "private_network_name": "default-private-network",
 "default_security_groups": ["default"]
 }
 }
}

	server_graceful_shutdown_timeout: Equivalent to –graceful_shutdown_timeout command-line flag.

	wf_step_graceful_termination_timeout: Equivalent to –wf_step_graceful_termination_timeout command-line flag.

	http_address: Equivalent to –http_address command-line flag.

	http_port: Equivalent to –http_port command-line flag.

	key_file: Equivalent to –key_file command-line flag.

	cert_file: Equivalent to –cert_file command-line flag.

	ssl_verify: Equivalent to –ssl_verify command-line flag.

	ca_file: Equivalent to –ca_file command-line flag.

	plugins_directory: Equivalent to –plugins_directory command-line flag.

	resources_prefix: Equivalent to –resources_prefix command-line flag.

	workers_number: Equivalent to –workers_number command-line flag.

	working_directory: Equivalent to –working_directory command-line flag.

	server_id: Equivalent to –server_id command-line flag.

Ansible configuration

Below is an example of configuration file with Ansible configuration options.

{
 "resources_prefix": "yorc1-",
 "infrastructures": {
 "openstack": {
 "auth_url": "http://your-openstack:5000/v2.0",
 "tenant_name": "your-tenant",
 "user_name": "os-user",
 "password": "os-password",
 "private_network_name": "default-private-network",
 "default_security_groups": ["default"]
 }
 },
 "ansible": {
 "use_openssh": true,
 "connection_retries": 3,
 "hosted_operations": {
 "unsandboxed_operations_allowed": false,
 "default_sandbox": {
 "image": "jfloff/alpine-python:2.7-slim",
 "entrypoint": ["python", "-c"],
 "command": ["import time;time.sleep(31536000);"]
 }
 }
 }
}

All available configuration options for Ansible are:

	use_openssh: Equivalent to –ansible_use_openssh command-line flag.

	debug: Equivalent to –ansible_debug command-line flag.

	connection_retries: Equivalent to –ansible_connection_retries command-line flag.

	cache_facts: Equivalent to –ansible_cache_facts command-line flag.

	archive_artifacts: Equivalent to –ansible_archive_artifacts command-line flag.

	operation_remote_base_dir: Equivalent to –operation_remote_base_dir command-line flag.

	keep_operation_remote_path: Equivalent to –keep_operation_remote_path command-line flag.

	keep_generated_recipes: Equivalent to –ansible_keep_generated_recipes command-line flag.

	hosted_operations: This is a complex structure that allow to define the behavior of a Yorc server when it executes an hosted operation.
For more information about hosted operation please see The hosted operations paragraph in the TOSCA support section.
This structure contains the following configuration options:

	unsandboxed_operations_allowed: This option control if operations can be executed directly on the system that hosts Yorc if no default sandbox is defined. This is not permitted by default.

	default_sandbox: This complex structure allows to define the default docker container to use to sandbox orchestrator-hosted operations.
Bellow configuration options entrypoint and command should be carefully set to run the container and make it sleep until operations are executed on it.
Defaults options will run a python inline script that sleeps for 1 year.

	image: This is the docker image identifier (in the docker format [repository/]name[:tag]) is option is required.

	entrypoint: This allows to override the default image entrypoint. If both entrypoint and command are empty the default value for entrypoint is ["python", "-c"].

	command: This allows to run a command within the container. If both entrypoint and command are empty the default value for command is ["import time;time.sleep(31536000);"].

	env: An optional list environment variables to set when creating the container. The format of each variable is var_name=value.

Ansible performance considerations

As described in TOSCA Supported Operations implementations, Yorc supports these builtin implementations for operations to execute on remote hosts :

	Bash scripts

	Python scripts

	Ansible Playbooks

It is recommended to implement operations as Ansible Playbooks to get the best execution performance.

When operations are not implemented using Ansible playbooks, see the Performance section on TOSCA Operations to improve the performance of scripts execution on remote hosts.

Consul configuration

Below is an example of configuration file with Consul configuration options.

{
 "resources_prefix": "yorc1-",
 "infrastructures": {
 "openstack": {
 "auth_url": "http://your-openstack:5000/v2.0",
 "tenant_name": "your-tenant",
 "user_name": "os-user",
 "password": "os-password",
 "private_network_name": "default-private-network",
 "default_security_groups": ["default"]
 }
 },
 "consul": {
 "address": "http://consul-host:8500",
 "datacenter": "dc1",
 "publisher_max_routines": 500
 }
}

All available configuration options for Consul are:

	address: Equivalent to –consul_address command-line flag.

	token: Equivalent to –consul_token command-line flag.

	datacenter: Equivalent to –consul_datacenter command-line flag.

	key_file: Equivalent to –consul_key_file command-line flag.

	cert_file: Equivalent to –consul_cert_file command-line flag.

	ca_cert: Equivalent to –consul_ca_cert command-line flag.

	ca_path: Equivalent to –consul_ca_path command-line flag.

	ssl: Equivalent to –consul_ssl command-line flag.

	ssl_verify: Equivalent to –consul_ssl_verify command-line flag.

	publisher_max_routines: Equivalent to –consul_publisher_max_routines command-line flag.

Terraform configuration

Below is an example of configuration file with Terraform configuration options.

{
 "resources_prefix": "yorc1-",
 "infrastructures": {
 "openstack": {
 "auth_url": "http://your-openstack:5000/v2.0",
 "tenant_name": "your-tenant",
 "user_name": "os-user",
 "password": "os-password",
 "private_network_name": "default-private-network",
 "default_security_groups": ["default"]
 }
 },
 "terraform": {
 "keep_generated_files": false
 }
}

All available configuration options for Terraform are:

	keep_generated_files: Equivalent to –terraform_keep_generated_files command-line flag.

Telemetry configuration

Telemetry configuration can only be done via the configuration file.
By default telemetry data are only stored in memory.
See Yorc Telemetry for more information about telemetry.

Below is an example of configuration file with telemetry metrics forwarded to a Statsd instance and with a Prometheus HTTP endpoint exposed.

{
 "resources_prefix": "yorc1-",
 "infrastructures": {
 "openstack": {
 "auth_url": "http://your-openstack:5000/v2.0",
 "tenant_name": "your-tenant",
 "user_name": "os-user",
 "password": "os-password",
 "private_network_name": "default-private-network",
 "default_security_groups": ["default"]
 }
 },
 "telemetry": {
 "statsd_address": "127.0.0.1:8125",
 "expose_prometheus_endpoint": true
 }
}

All available configuration options for telemetry are:

	service_name: Metrics keys prefix, defaults to yorc.

	disable_hostname: Specifies if gauge values should not be prefixed with the local hostname. Defaults to false.

	disable_go_runtime_metrics: Specifies Go runtime metrics (goroutines, memory, …) should not be published. Defaults to false.

	statsd_address: Specify the address (in form <address>:<port>) of a statsd server to forward metrics data to.

	statsite_address: Specify the address (in form <address>:<port>) of a statsite server to forward metrics data to.

	expose_prometheus_endpoint: Specify if an HTTP Prometheus endpoint should be exposed allowing Prometheus to scrape metrics.

Deprecated configuration options

Deprecated since version 3.0.0.

	ansible_use_openssh: Equivalent to –ansible_use_openssh command-line flag.

	ansible_debug: Equivalent to –ansible_debug command-line flag.

	ansible_connection_retries: Equivalent to –ansible_connection_retries command-line flag.

	operation_remote_base_dir: Equivalent to –operation_remote_base_dir command-line flag.

	keep_operation_remote_path: Equivalent to –keep_operation_remote_path command-line flag.

	consul_address: Equivalent to –consul_address command-line flag.

	consul_token: Equivalent to –consul_token command-line flag.

	consul_datacenter: Equivalent to –consul_datacenter command-line flag.

	consul_key_file: Equivalent to –consul_key_file command-line flag.

	consul_cert_file: Equivalent to –consul_cert_file command-line flag.

	consul_ca_cert: Equivalent to –consul_ca_cert command-line flag.

	consul_ca_path: Equivalent to –consul_ca_path command-line flag.

	consul_ssl: Equivalent to –consul_ssl command-line flag.

	consul_ssl_verify: Equivalent to –consul_ssl_verify command-line flag.

	consul_publisher_max_routines: Equivalent to –consul_publisher_max_routines command-line flag.

Environment variables

	YORC_ANSIBLE_USE_OPENSSH: Equivalent to –ansible_use_openssh command-line flag.

	YORC_ANSIBLE_DEBUG: Equivalent to –ansible_debug command-line flag.

	YORC_ANSIBLE_CONNECTION_RETRIES: Equivalent to –ansible_connection_retries command-line flag.

	YORC_ANSIBLE_CACHE_FACTS: Equivalent to –ansible_cache_facts command-line flag.

	YORC_ANSIBLE_ARCHIVE_ARTIFACTS: Equivalent to –ansible_archive_artifacts command-line flag.

	YORC_ANSIBLE_KEEP_GENERATED_RECIPES: Equivalent to –ansible_keep_generated_recipes command-line flag.

	YORC_OPERATION_REMOTE_BASE_DIR: Equivalent to –operation_remote_base_dir command-line flag.

	YORC_CONSUL_ADDRESS: Equivalent to –consul_address command-line flag.

	YORC_CONSUL_TOKEN: Equivalent to –consul_token command-line flag.

	YORC_CONSUL_DATACENTER: Equivalent to –consul_datacenter command-line flag.

	YORC_CONSUL_KEY_FILE: Equivalent to –consul_key_file command-line flag.

	YORC_CONSUL_CERT_FILE: Equivalent to –consul_cert_file command-line flag.

	YORC_CONSUL_CA_CERT: Equivalent to –consul_ca_cert command-line flag.

	YORC_CONSUL_CA_PATH: Equivalent to –consul_ca_path command-line flag.

	YORC_CONSUL_SSL: Equivalent to –consul_ssl command-line flag.

	YORC_CONSUL_SSL_VERIFY: Equivalent to –consul_ssl_verify command-line flag.

	YORC_CONSUL_PUBLISHER_MAX_ROUTINES: Equivalent to –consul_publisher_max_routines command-line flag.

	YORC_SERVER_GRACEFUL_SHUTDOWN_TIMEOUT: Equivalent to –graceful_shutdown_timeout command-line flag.

	YORC_WF_STEP_GRACEFUL_TERMINATION_TIMEOUT: Equivalent to –wf_step_graceful_termination_timeout command-line flag.

	YORC_HTTP_ADDRESS: Equivalent to –http_address command-line flag.

	YORC_HTTP_PORT: Equivalent to –http_port command-line flag.

	YORC_KEEP_OPERATION_REMOTE_PATH: Equivalent to –keep_operation_remote_path command-line flag.

	YORC_KEY_FILE: Equivalent to –key_file command-line flag.

	YORC_CERT_FILE: Equivalent to –cert_file command-line flag.

	YORC_SSL_VERIFY: Equivalent to –ssl_verify command-line flag.

	YORC_CA_FILE: Equivalent to –ca_file command-line flag.

	YORC_PLUGINS_DIRECTORY: Equivalent to –plugins_directory command-line flag.

	YORC_RESOURCES_PREFIX: Equivalent to –resources_prefix command-line flag.

	YORC_WORKERS_NUMBER: Equivalent to –workers_number command-line flag.

	YORC_WORKING_DIRECTORY: Equivalent to –working_directory command-line flag.

	YORC_SERVER_ID: Equivalent to –server_id command-line flag.

	YORC_LOG: If set to 1 or DEBUG, enables debug logging for Yorc.

	YORC_TERRAFORM_KEEP_GENERATED_FILES: Equivalent to –terraform_keep_generated_files command-line flag.

Infrastructures configuration

Due to the pluggable nature of infrastructures support in Yorc their configuration differ from other configurable options.
An infrastructure configuration option could be specified by either a its configuration placeholder in the configuration file, a command line flag
or an environment variable.

The general principle is for a configurable option option_1 for infrastructure infra1 it should be specified in the configuration file as following:

{
 "infrastructures": {
 "infra1": {
 "option_1": "value"
 }
 }
}

Similarly a command line flag with the name --infrastructure_infra1_option_1 and an environment variable with the name YORC_INFRA_INFRA1_OPTION_1 will be
automatically supported and recognized. The default order of precedence apply here.

Builtin infrastructures configuration

OpenStack

OpenStack infrastructure key name is openstack in lower case.

	Option Name

	Description

	Data Type

	Required

	Default

	auth_url

	Specify the authentication url for OpenStack (should be the Keystone endpoint ie: http://your-openstack:5000/v2.0).

	string

	yes

	

	tenant_id

	Specify the OpenStack tenant id to use.

	string

	Either this or tenant_name should be provided.

	

	tenant_name

	Specify the OpenStack tenant name to use.

	string

	Either this or tenant_id should be provided.

	

	user_name

	Specify the OpenStack user name to use.

	string

	yes

	

	password

	Specify the OpenStack password to use.

	string

	yes

	

	region

	Specify the OpenStack region to use

	string

	no

	RegionOne

	private_network_name

	Specify the name of private network to use as primary adminstration network between Yorc and Compute
instances. It should be a private network accessible by this instance of Yorc.

	string

	Required to use the PRIVATE keyword for TOSCA
admin networks

	

	provisioning_over_fip_allowed

	This allows to perform the provisioning of a Compute over the associated floating IP if it exists. This is useful
when Yorc is not deployed on the same private network than the provisioned Compute.

	boolean

	no

	false

	default_security_groups

	Default security groups to be used when creating a Compute instance. It should be a comma-separated list of
security group names

	list of
strings

	no

	

	insecure

	Trust self-signed SSL certificates

	boolean

	no

	false

	cacert_file

	Specify a custom CA certificate when communicating over SSL. You can specify either a path to the file or the
contents of the certificate

	string

	no

	

	cert

	Specify client certificate file for SSL client authentication. You can specify either a path to the file or
the contents of the certificate

	string

	no

	

	key

	Specify client private key file for SSL client authentication. You can specify either a path to the file or
the contents of the key

	string

	no

	

Kubernetes

Kubernetes infrastructure key name is kubernetes in lower case.

	Option Name

	Description

	Data Type

	Required

	Default

	master_url

	URL of the HTTP API of Kubernetes is exposed. Format: https://<host>:<port>

	string

	yes

	

	ca_file

	Path to a trusted root certificates for server

	string

	no

	

	cert_file

	Path to the TLS client certificate used for authentication

	string

	no

	

	key_file

	Path to the TLS client key used for authentication

	string

	no

	

	insecure

	Server should be accessed without verifying the TLS certificate (testing only)

	boolean

	no

	

Google Cloud Platform

Google Cloud Platform infrastructure key name is google in lower case.

	Option Name

	Description

	Data Type

	Required

	Default

	project

	ID of the project to apply any resources to

	string

	yes

	

	application_credentials

	Path of file containing credentials*

	string

	no

	Google Application Default Credentials

	credentials

	Content of file containing credentials

	string

	no

	Google Application Default Credentials

	region

	The region to operate under

	string

	no

	

application_credentials is the path (accessible to Yorc server) of a file containing service account private keys in JSON format.
This file can be downloaded from the Google Cloud Console at Google Cloud service account file [https://console.cloud.google.com/apis/credentials/serviceaccountkey].

If no file path is specified in application_credentials and no file content is specified in credentials, the orchestrator will fall back to using the Google Application Default Credentials [https://cloud.google.com/docs/authentication/production] if any.

AWS

AWS infrastructure key name is aws in lower case.

	Option Name

	Description

	Data Type

	Required

	Default

	access_key

	Specify the AWS access key credential.

	string

	yes

	

	secret_key

	Specify the AWS secret key credential.

	string

	yes

	

	region

	Specify the AWS region to use.

	string

	yes

	

Slurm

Slurm infrastructure key name is slurm in lower case.

	Option Name

	Description

	Data Type

	Required

	Default

	user_name

	SSH Username to be used to connect to the Slurm Client’s node

	string

	yes

	

	password

	SSH Password to be used to connect to the Slurm Client’s node

	string

	Either this or private_key should be provided

	

	private_key

	SSH Private key to be used to connect to the Slurm Client’s node

	string

	Either this or password should be provided

	

	url

	IP address of the Slurm Client’s node

	string

	yes

	

	port

	SSH Port to be used to connect to the Slurm Client’s node

	string

	yes

	

	default_job_name

	Default name for the job allocation.

	string

	no

	

Vault configuration

Due to the pluggable nature of vaults support in Yorc their configuration differ from other configurable options.
A vault configuration option could be specified by either its configuration placeholder in the configuration file, a command line flag
or an environment variable.

The general principle is for a configurable option option_1 it should be specified in the configuration file as following:

{
 "vault": {
 "type": "vault_implementation",
 "option_1": "value"
 }
}

Similarly a command line flag with the name --vault_option_1 and an environment variable with the name YORC_VAULT_OPTION_1 will be
automatically supported and recognized. The default order of precedence apply here.

type is the only mandatory option for all vaults configurations, it allows to select the vault implementation by specifying it’s ID. If the
type option is not present either in the config file, as a command line flag or as an environment variable, Vault configuration will be ignored.

The integration with a Vault is totally optional and this configuration part may be leave empty.

Builtin Vaults configuration

HashiCorp’s Vault

This is the only builtin supported Vault implementation.
Implementation ID to use with the vault type configuration parameter is hashicorp.

Bellow are recognized configuration options for Vault:

	Option Name

	Description

	Data Type

	Required

	Default

	address

	Address is the address of the Vault server. This should be a complete URL such as “https://vault.example.com”.

	string

	yes

	

	max_retries

	MaxRetries controls the maximum number of times to retry when a 5xx error occurs. Set to 0 or less to disable
retrying.

	integer

	no

	0

	timeout

	Timeout is for setting custom timeout parameter in the HttpClient.

	string

	no

	

	ca_cert

	CACert is the path to a PEM-encoded CA cert file to use to verify the Vault server SSL certificate.

	string

	no

	

	ca_path

	CAPath is the path to a directory of PEM-encoded CA cert files to verify the Vault server SSL certificate.

	string

	no

	

	client_cert

	ClientCert is the path to the certificate for Vault communication.

	string

	no

	

	client_key

	ClientKey is the path to the private key for Vault communication

	string

	no

	

	tls_server_name

	TLSServerName, if set, is used to set the SNI host when connecting via TLS.

	string

	no

	

	tls_skip_verify

	Disables SSL verification

	boolean

	no

	false

	token

	Specifies the access token to use to connect to vault. This is highly discouraged to this option in the
configuration file as the token is a sensitive data and should not be written on disk. Prefer the associated environment variable

	string

	no

	

Yorc Client CLI Configuration

This section is dedicated to the CLI part of yorc that covers everything except the server configuration detailed
above. It focus on configuration options commons to all the commands. Sub commands may have additional options please use the cli help command to see them.

Just like for its server part Yorc Client CLI has various configuration options that could be specified either by command-line flags, configuration file or environment variables.

If an option is specified several times using flags, environment and config file, command-line flag will have the precedence then the environment variable and finally the value defined in the configuration file.

Command-line options

	--ca_file: This provides a file path to a PEM-encoded certificate authority. This implies the use of HTTPS to connect to the Yorc REST API.

	--ca_path: Path to a directory of PEM-encoded certificates authorities. This implies the use of HTTPS to connect to the Yorc REST API.

	--cert_file: File path to a PEM-encoded client certificate used to authenticate to the Yorc API. This must be provided along with key-file. If one of key-file or cert-file is not provided then SSL authentication is disabled. If both cert-file and key-file are provided this implies the use of HTTPS to connect to the Yorc REST API.

	-c or --config: config file (default is /etc/yorc/yorc-client.[json|yaml])

	--key_file: File path to a PEM-encoded client private key used to authenticate to the Yorc API. This must be provided along with cert-file. If one of key-file or cert-file is not provided then SSL authentication is disabled. If both cert-file and key-file are provided this implies the use of HTTPS to connect to the Yorc REST API.

	--skip_tls_verify: Controls whether a client verifies the server’s certificate chain and host name. If set to true, TLS accepts any certificate presented by the server and any host name in that certificate. In this mode, TLS is susceptible to man-in-the-middle attacks. This should be used only for testing. This implies the use of HTTPS to connect to the Yorc REST API.

	-s or --ssl_enabled: Use HTTPS to connect to the Yorc REST API. This is automatically implied if one of --ca_file, --ca_path, --cert_file, --key_file or --skip_tls_verify is provided.

	--yorc_api: specify the host and port used to join the Yorc’ REST API (default “localhost:8800”)

Configuration files

Configuration files are either JSON or YAML formatted as a single object containing the following configuration options.
By default Yorc will look for a file named yorc-client.json or yorc-client.yaml in /etc/yorc directory then if not found in the current directory.
The –config command line flag allows to specify an alternative configuration file.

	ca_file: Equivalent to –ca_file command-line flag.

	ca_path: Equivalent to –ca_path command-line flag.

	cert_file: Equivalent to –cert_file command-line flag.

	key_file: Equivalent to –key_file command-line flag.

	skip_tls_verify: Equivalent to –skip_tls_verify command-line flag.

	ssl_enabled: Equivalent to –ssl_enabled command-line flag.

	yorc_api: Equivalent to –yorc_api command-line flag.

Environment variables

	YORC_CA_FILE: Equivalent to –ca_file command-line flag.

	YORC_CA_PATH: Equivalent to –ca_path command-line flag.

	YORC_CERT_FILE: Equivalent to –cert_file command-line flag.

	YORC_KEY_FILE: Equivalent to –key_file command-line flag.

	YORC_SKIP_TLS_VERIFY: Equivalent to –skip_tls_verify command-line flag.

	YORC_SSL_ENABLED: Equivalent to –ssl_enabled command-line flag.

	YORC_API: Equivalent to –yorc_api command-line flag.

Starting Yorc

Starting Consul

Yorc requires a running Consul instance prior to be started.

Here is how to start a standalone Consul server instance on the same host than Yorc:

consul agent -server -bootstrap-expect 1 -data-dir ./consul-data

Note

Wait for the agent: Synced service 'consul' log message to appear before continuing

Starting Yorc

Please report to the Yorc Server Configuration for an exhaustive list of Yorc’ configuration options.
At least OpenStack access configuration files should be provided either by command-line flags, environment variables or configuration elements.
They are omitted bellow for brevity and considered as provided by a configuration file in one of the default location.

Note that if you are using a passphrase on your ssh key, you have to start an ssh-agent before launching yorc. It is strongly recommended to start one by giving him a socket name.

eval `ssh-agent -a /tmp/ssh-sock`

So in case of your ssh-agent process die, just restart it with the command above.

If your ssh key does not have a passphrase, do not start any ssh-agent before starting yorc and make sure that environement variable SSH_AUTH_SOCK is not set.

killall ssh-agent
unset SSH_AUTH_SOCK

Then start yorc

yorc server

Yorc Command Line Interface

You can interact with a Yorc server using a command line interface (CLI). The same binary as for running a Yorc server is used for the CLI.

General Options

	--yorc-api: Specifies the host and port used to join the Yorc’ REST API. Defaults to localhost:8800. Configuration entry yorc_api and env var YORC_API may also be used.

	--no-color: Disable coloring output (By default coloring is enable).

	-s or --secured: Use HTTPS to connect to the Yorc REST API

	--ca-file: This provides a file path to a PEM-encoded certificate authority. This implies the use of HTTPS to connect to the Yorc REST API.

	--skip-tls-verify: skip-tls-verify controls whether a client verifies the server’s certificate chain and host name. If set to true, TLS accepts any certificate presented by the server and any host name in that certificate. In this mode, TLS is susceptible to man-in-the-middle attacks. This should be used only for testing. This implies the use of HTTPS to connect to the Yorc REST API.

CLI Commands related to deployments

All deployments related commands are sub-commands of a command named deployments.
In practice that means that the commands starts with

yorc deployments

For brevity deployments supports the following aliases: depls, depl, deps, dep and d.

Deploy a CSAR

Deploys a file or directory pointed by <csar_path>
If <csar_path> point to a valid zip archive it is submitted to Yorc as it.
If <csar_path> point to a file or directory it is zipped before beeing submitted to Yorc.
If <csar_path> point to a single file it should be TOSCA YAML description.

yorc deployments deploy <csar_path> [flags]

	Flags:

	
	--id: Specify a id for this deployment. This id should not already exist, should respect the following format: ^[-_0-9a-zA-Z]+$ and should be less than 36 characters long (Optional otherwise a unique ID is generated by Yorc)

	-e, --stream-events: Stream events after deploying the CSAR.

	-l, --stream-logs: Stream logs after deploying the CSAR. In this mode logs can’t be filtered, to use this feature see the “log” command.

Undeploy a deployment

Undeploy an application specifying the deployment ID.

yorc deployments undeploy <DeploymentId> [flags]

	Flags:

	
	-p, --purge: To use if you want to purge instead of undeploy.

	-e, --stream-events: Stream events after deploying the CSAR.

	-l, --stream-logs: Stream logs after deploying the CSAR. In this mode logs can’t be filtered, to use this feature see the “log” command.

List deployments

List active deployments. Giving there ids and statuses.

yorc deployments list

Get information on a specific deployment

Display information about a given deployment.
It prints the deployment status and the status of all the nodes contained in this deployment.

yorc deployments info <DeploymentId> [flags]

	Flags:

	
	-d, --detailed: Add details to the info command making it less concise and readable.

Get deployment events

Streams events for all or a given deployment id

yorc deployments events [<DeploymentId>] [flags]

	Flags:

	
	-b, --from-beginning: Show events from the beginning of a deployment

	-n, --no-stream: Show events then exit. Do not stream events. It implies –from-beginning

Get deployment logs

Streams logs for all or a given deployment id.
The log format is: [Timestamp][Level][DeploymentID][WorkflowID][ExecutionID][NodeID][InstanceID][InterfaceName][OperationName][TypeID]Content

yorc deployments logs [<DeploymentId>] [flags]

	Flags:

	
	-b, --from-beginning: Show logs from the beginning of a deployment

	-n, --no-stream: Show logs then exit. Do not stream logs. It implies –from-beginning

Get deployment tasks

Display info about the tasks related to a given deployment.
It prints the tasks ID, type and status.

yorc deployments tasks <DeploymentId> [flags]

Get deployment task info

Display information about a given task specifying the deployment id and the task id.

yorc deployments task info <DeploymentId> <TaskId> [flags]

	Flags:

	
	-w, --steps: Show steps of the related workflow associated to the task

Cancel a deployment task

Cancel a task specifying the deployment id and the task id.
The task should be in status “INITIAL” or “RUNNING” to be canceled.

yorc deployments tasks cancel <DeploymentId> <TaskId> [flags]

Resume a deployment task

Resume a task specifying the deployment id and the task id.
The task should be in status “FAILED” to be resumed.

yorc deployments tasks resume <DeploymentId> <TaskId> [flags]

Fix a deployment task step

Fix a task step specifying the deployment id, the task id and the step name.
The task step must be on error to be fixed.

yorc deployments tasks fix <DeploymentId> <TaskId> <StepName> [flags]

Scale a specific node

Scale a given node of a deployment <DeploymentId> by adding or removing the specified number of instances.

yorc deployments scale <DeploymentId> [flags]

	Flags:

	
	-d, --delta: The non-zero number of instance to add (if > 0) or remove (if < 0).

	-n, --node: The name of the node that should be scaled.

	-e, --stream-events: Stream events after issuing the scaling request.

	-l, --stream-logs: Stream logs after issuing the scaling request. In this mode logs can’t be filtered, to use this feature see the “log” command.

Execute a custom command

Executes a custom command for a given node of a deployment <DeploymentId>.

yorc deployments custom <DeploymentId> [flags]

	Flags:

	
	-c, --custom: Provide the custom command name (use with flag n and i)

	-d, --data: Need to provide the JSON format of the custom command

	-i, --input: Provide the input for the custom command (use with flag c and n)

	-n, --node: Provide the node name (use with flag c and i)

Example using --input flags:

yorc deployments custom deployID --custom cmdName --node nodeName --input 'key1=["value1","value2"]' --input 'key2="value3"'

Example using --data flag:

yorc deployments custom deployID --data '{"name":"cmdName","node":"nodeName","inputs":{"key1":["value1","value2"],"key2":"value3"}}'

List workflows of a given deployment

Lists workflows defined in a deployment <DeploymentId>.

yorc deployments workflows list <DeploymentId> [flags]

Execute a workflow on a given deployment

Trigger a workflow on deployment <DeploymentId>.

yorc deployments workflows execute <DeploymentId> [flags]

	Flags:

	
	--continue-on-error: By default if an error occurs in a step of a workflow then other running steps are cancelled and the workflow is stopped. This flag allows to continue to the next steps even if an error occurs.

	-e, --stream-events: Stream events after riggering a workflow.

	-l, --stream-logs: Stream logs after triggering a workflow. In this mode logs can’t be filtered, to use this feature see the “log” command.

	-w, --workflow-name: The workflows name (mandatory)

Show a workflow on a given deployment

Show a human readable textual representation of a given TOSCA workflow defined in deployment <DeploymentId>.

yorc deployments workflows show <DeploymentId> [flags]

	Flags:

	
	-w, --workflow-name: The workflows name (mandatory)

Generate a graphical representation of a workflow on a given deployment

Generate a GraphViz Dot format representation of a given workflow. The output can be easily converted to an image by making use of the dot
command provided by GraphViz:

yorc deployments workflows graph <DeploymentId> [flags]| dot -Tpng > graph.png

	Flags:

	
	-w, --workflow-name: The workflows name (mandatory)

	--horizontal: Draw graph with an horizontal layout. (layout is vertical by default)

CLI Commands related to hosts pool

All hosts pool related commands are sub-commands of a command named hostspool.
In practice that means that the commands starts with

yorc hostspool

For brevity hostspool supports the following aliases: hostpool, hostsp, hpool and hp.

Add a host pool

Adds a host to the hosts pool managed by this Yorc cluster.
The <hostname> should not already exist.
The connection object of the JSON request is mandatory while the labels list is optional.
This labels list should be composed with elements with the “op” parameter set to “add” but it could be omitted.

yorc hostspool add <hostname> [flags]

	Flags:

	
	--data or -d : Specify a JSON format for the host pool to add. The JSON format for the host pool is described below.

	--key or -k : Specify a private key to access host if no host connection is defined in JSON format. (mandatory if no password is defined)

	--password or -p : Specify a password to access host if no host connection is defined in JSON format. (mandatory if no private key is defined)

	--host: Hostname or ip address used to connect to the host. (defaults to the hostname in the hosts pool)

	--label: Label in form key=value to add to the host. May be specified several time.

	--port: Port used to connect to the host. (default 22)

	--user: User used to connect to the host (default “root”)

Host pool (JSON):

{
 "connection": {
 "host": "defaults_to_<hostname>",
 "user": "defaults_to_root",
 "port": "defaults_to_22",
 "private_key": "one_of_password_or_private_key_required",
 "password": "one_of_password_or_private_key_required"
 },
 "labels": [
 {"name": "os.type", "value": "linux"},
 {"op": "add", "name": "host.mem_size", "value": "4G"}
]
}

Update a host pool

Update labels list or connection of a host of the hosts pool managed by this Yorc cluster.
The <hostname> should exists.
Both connection and labels list object of the JSON request are optional.
This labels list should be composed with elements with the “op” parameter set to “add” or “remove” but defaults to “add” if omitted. Adding a tag that already exists replace its value.

yorc hostspool update <hostname> [flags]

	Flags:

	
	--data or -d : Specify a JSON format for the host pool to update. The JSON format for the host pool is described below.

	--add-label: Add a label in form ‘key=value’ to the host. May be specified several time.

	--host: Hostname or ip address used to connect to the host. (defaults to the hostname in the hosts pool)

	--key or -k: At any time a host of the pool should have at least one of private key or password. To delete a registered private key use the “-” character.

	--password or -p: At any time a host of the pool should have at least one of private key or password. To delete a registered password use the “-” character.

	--port: Port used to connect to the host. (defaults to the hostname in the hosts pool) (default 22)

	--remove-label: Remove a label from the host. May be specified several time.

	--user: User used to connect to the host (default “root”)

Host pool (JSON):

{
 "connection": {
 "host": "defaults_to_<hostname>",
 "user": "defaults_to_root",
 "port": "defaults_to_22",
 "private_key": "one_of_password_or_private_key_required",
 "password": "one_of_password_or_private_key_required"
 },
 "labels": [
 {"name": "os.type", "value": "linux"},
 {"op": "add", "name": "host.mem_size", "value": "4G"},
 {"op": "remove", "name": "host.disk_size"}
]
}

Delete a host pool

Deletes a host from the hosts pool managed by this Yorc cluster.
The <hostname> should exists.

yorc hostspool delete <hostname> [<hostname>...]

List hosts in the pool

Lists hosts of the hosts pool managed by this Yorc cluster.

yorc hostspool list [flags]

	Flags:

	
	--filter or -f: Filter hosts based on their labels. May be specified several time, filters are joined by a logical ‘and’. Please refer to Filters Grammar for more details.

Note: If the filter expression contains a comma as in “mylabel in (v1,v2)”, wrap it with single quotes as in the example below:

yorc hp list -f '"mylabel in (v1, v2)"'

Get information on a specific host in the pool

Gets the description of a host of the hosts pool managed by this Yorc cluster.

yorc hostspool info <hostname>

Apply a Hosts Pool configuration

Applies a Hosts Pool configuration provided in a YAML or JSON file.
This command will compare and display the differences between the current Hosts Pool configuration and the configuration specified in the file.
A user confirmation will be asked before proceeding.
The command will fail if the new configuration would result in the removal of a host currently allocated for a deployment.

yorc hostspool apply <filename>

	Flags:

	
	--auto-approve: Skip interactive approval before applying the new Hosts Pool configuration.

YAML and JSON formats are accepted. The following properties are supported :

	
	hosts: List of hosts configuration. A host configuration supports the following properties,

	
	name: mandatory string identifying the host, no other host entry can have the same name value in the file

	
	connection: Connection configuration,

	
	host: Hostname or ip address used to connect to the host (defaults to the name described above)

	user: name of the user used to connect to the host (default “root”)

	password: either a password or a private key should be provided

	private_key: Path to a private key file (or private key file content), either a password or a private key should be provided

	port: Port used to connect to the host (default 22)

	labels: key/value pairs (see Filters Grammar for more details on labels)

Example of a YAML Hosts Pool configuration file :

hosts:
- name: host1
 connection:
 host: host1.example.com
 user: test
 private_key: /path/to/secrets/id_rsa
 port: 22
 labels:
 environment: dev
 testlabel: hello
 host.cpu_frequency: 3 GHz
 host.disk_size: 50 GB
 host.mem_size: 4GB
 host.num_cpus: "4"
 os.architecture: x86_64
 os.distribution: ubuntu
 os.type: linux
 os.version: "17.1"
- name: host2
 connection:
 host: host2.example.com
 user: test
 password: test

Export a Hosts Pool configuration

Exports a Hosts Pool configuration as a YAML or JSON representation, to the standard output or a file.

yorc hostspool export

	Flags:

	
	--output or -o: Output format, yaml or json (default yaml)

	--file or -f: Path to a file where to store the output (default standard output)

Yorc Supported infrastructures

This section describes the state of our integration with supported infrastructures and their specificities

Hosts Pool

[image: prod]

The Hosts Pool is a very special kind of infrastructure. It consists in registering existing Compute nodes into a pool managed by Yorc.
Those compute nodes could be physical or virtual machines, containers or whatever as long as Yorc can SSH into it. Yorc will be responsible to
allocate and release hosts for deployments. This is safe to use it concurrently in a Yorc cluster, Yorc instances will synchronize amongst themselves to
ensure consistency of the pool.

To sum up this infrastructure type is really great when you want to use an infrastructure that is not yet supported by Yorc.
Just take care you’re responsible for handling the compatibility or conflicts of what is already installed and what will be by Yorc on your hosts pool.
The best practice is using container isolation. This is especially true if a host can be shared by several apps by specifying in Tosca with the Compute shareable property.

Hosts management

Yorc comes with a REST API that allows to manage hosts in the pool and to easily integrate it with other systems. The Yorc CLI leverage this REST API
to make it user friendly, please refer to CLI Commands related to hosts pool for more informations

Hosts Pool labels & filters

It is strongly recommended to associate labels to your hosts. Labels allow to filter hosts based on criteria. Labels are just a couple of key/value pair

Filters Grammar

There are four kinds of filters supported by Yorc:

	Filters based on the presence of a label label_identifier will match if a label with the given name is associated with a host whatever its value is.

	Filters based on equality to a value label_identifier (=|==|!=) value will match if the value associated with the given label is equals (= and ==) or different (!=) to the given value

	Filters based on sets label_identifier (in | not in) (value [, other_value]) will match if the value associated with the given label is one (in) or is not one (not in) of the given values

	Filters based on comparisons label_identifier (< | <= | > | >=) number[unit] will match if the value associated with the given label is a number and matches the comparison sign. A unit could be associated
with the number, currently supported units are golang durations (“ns”, “us” , “ms”, “s”, “m” or “h”), bytes units (“B”, “KiB”, “KB”, “MiB”, “MB”, “GiB”, “GB”, “TiB”, “TB”, “PiB”, “PB”, “EiB”, “EB”) and
International System of Units (SI) [https://en.wikipedia.org/wiki/Metric_prefix]. The case of the unit does not matter.

Here are some example:

	gpu

	os.distribution != windows

	os.architecture == x86_64

	environment = "Q&A"

	environment in ("Q&A", dev, edge)

	gpu.type not in (k20, m60)

	gpu_nb > 1

	os.mem_size >= 4 GB

	os.disk_size < 1tb

	max_allocation_time <= 120h

Implicit filters & labels

TOSCA allows to specify requirements on Compute hardware [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_TYPE_CAPABILITIES_COMPUTE]
and Compute operating system [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_TYPE_CAPABILITIES_OPSYS] .
These are capabilities named host and os in the TOSCA node Compute [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_TYPE_NODES_COMPUTE] .
If those are specified in the topology, Yorc will automatically add a filter host.<property_name> >= <property_value> <property_unit> or os.<property_name> = <property_value>
This will allow to select hosts matching the required criteria.

	This means that it is strongly recommended to add the following labels to your hosts:

	
	host.num_cpus (ie. host.num_cpus=4)

	host.cpu_frequency (ie. host.cpu_frequency=3 GHz)

	host.disk_size (ie. host.disk_size=50 GB)

	host.mem_size (ie. host.mem_size=4GB)

	os.architecture (ie. os.architecture=x86_64)

	os.type (ie. os.type=linux)

	os.distribution (ie. os.distribution=ubuntu)

	os.version (ie. os.version=17.10)

Some labels are also automatically exposed as TOSCA Compute instance attributes:

	if present a label named private_address will be used as attribute private_address and ip_address of the Compute. If not set the connection host will be used instead
this allows to specify a network different for the applicative communication and for the orchestrator communication

	if present a label named public_address will be used as attribute public_address of the Compute.

	if present, following labels will fill the networks attribute of the Compute node:

	networks.<idx>.network_name (ie. networks.0.network_name)

	networks.<idx>.network_id (ie. networks.0.network_id)

	networks.<idx>.addresses as a coma separated list of addresses (ie. networks.0.addresses)

The resources host pool labels (host.num_cpus, host.disk_size, host.mem_size) are automatically decreased and increased respectively when a host pool is allocated and released
only if you specify any of these Tosca host resources capabilities Compute in its Alien4Cloud applications.
If you apply a new configuration on allocated hosts with new host resources labels, they will be recalculated depending on existing allocations resources.

Slurm

[image: prod]

Slurm [https://slurm.schedmd.com/] is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters.
It is wildly used in High Performance Computing and it is the default scheduler of the Bull Super Computer Suite [https://atos.net/en/products/high-performance-computing-hpc] .

Yorc interacts with Slurm to allocate nodes on its cluster.

Resources based scheduling

TOSCA allows to specify requirements on Compute nodes [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_TYPE_CAPABILITIES_COMPUTE]
if specified num_cpus and mem_size requirements are used to allocate only the required resoures on computes. This allows to share a Slurm managed compute
across several deployments. If not specified a whole compute node will be allocated.

Yorc also support Slurm GRES [https://slurm.schedmd.com/gres.html] based scheduling. This is generally used to request a host with a specific type of resource (consumable or not)
such as GPUs.

Future work

	We plan to soon work on modeling Slurm Jobs in TOSCA and execute them thanks to Yorc.

	We also plan to support Singularity [http://singularity.lbl.gov/] , a container system similar to Docker but designed to integrate well HPC environments.
This feature, as it will leverage some Bull HPC proprietary integration with Slurm, will be part of a premium version of Yorc.

Google Cloud Platform

[image: dev]

The Google Cloud Platform integration within Yorc allows to provision Compute nodes on top of Google Compute Engine [https://cloud.google.com/compute/].
This part is ready for production.

It is planned to support soon the following features and have them production-ready:

	Persistent Disks provisioning

	Virtual Private Cloud Networks provisioning

Future work

The following feature is planned to be supported in a next release:

	Google Kubernetes Engine [https://cloud.google.com/kubernetes-engine/] to deploy containers

AWS

[image: dev]

The AWS integration within Yorc allows to provision Compute nodes and Elastic IPs on top of AWS EC2 [https://aws.amazon.com/ec2/] this part is ready for production
but we plan to support soon the following features to make it production-ready:

	Support Elastic Block Store provisioning

	Support Networks provisioning with Virtual Private Cloud

Future work

	We plan to work on modeling AWS Batch Jobs [https://aws.amazon.com/batch/] in TOSCA and execute them thanks to Yorc.

	We plan to work on AWS ECS [https://aws.amazon.com/ecs] to deploy containers

OpenStack

[image: prod]

The OpenStack [https://www.openstack.org/] integration within Yorc is production-ready. We support Compute, Block Storage, Virtual Networks and Floating IPs
provisioning.

Future work

	We plan to work on modeling OpenStack Mistral workflows [https://wiki.openstack.org/wiki/Mistral] in TOSCA and execute them thanks to Yorc.

	We plan to work on OpenStack Zun [https://wiki.openstack.org/wiki/Zun] to deploy containers directly on top of OpenStack

Kubernetes

[image: incubation]

Kubernetes support is in a kind of Proof Of Concept phase for now. We are currently working on a total refactoring of this part.

TOSCA support in Yorc

TOSCA stands for Topology and Orchestration Specification for Cloud Applications. It is an
OASIS [https://www.oasis-open.org/] standard specification. Currently Yorc implements the version
TOSCA Simple Profile in YAML Version 1.2 [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html]
of this specification.

Yorc is a TOSCA based orchestrator, meaning that it consumes TOSCA definitions and services templates to perform applications deployments
and lifecycle management.

Yorc is also workflow driven meaning that it will execute workflows defined in a TOSCA service template to perform a deployment.
The easiest way to generate valid TOSCA definitions for Yorc is to use a TOSCA web composer called Alien4Cloud [http://alien4cloud.github.io/].

Yorc provides an Alien4Cloud (A4C) plugin that allows A4C to interact with Yorc.

Alien4Cloud provides a great documentation on writing TOSCA components [http://alien4cloud.github.io/#/documentation/1.4.0/devops_guide/dev_ops_guide.html].

Bellow are the specificities of Yorc

TOSCA Operations

Supported Operations implementations

Currently Yorc supports as builtin implementations for operations:

	Bash scripts

	Python scripts

	Ansible Playbooks

New implementations can be plugged into Yorc using its plugin mechanism.

Execution Context

Python and Bash scripts are executed by a wrapper script used to retrieve operations outputs. This script itself is executed using
a bash -l command meaning that the login profile of the user used to connect to the host will be loaded.

Warning

Defining operations inputs with the same name as Bash reserved variables like USER, HOME, HOSTNAME and so on… [http://tldp.org/LDP/abs/html/internalvariables.html]
may lead to unexpected results… Avoid to use them.

Injected Environment Variables

When operation scripts are called, some environment variables are injected by Yorc.

	For Python and Bash scripts those variables are injected as environment variables.

	For Python scripts they are also injected as global variables of the script and can be used directly.

	For Ansible playbooks they are injected as Playbook variables [http://docs.ansible.com/ansible/latest/playbooks_variables.html].

Operation outputs

TOSCA defines a function called get_operation_output [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/csd01/TOSCA-Simple-Profile-YAML-v1.2-csd01.html#DEFN_FUNCTION_GET_OPERATION_OUTPUT],
this function instructs Yorc to retrieve a value at the end of a operation. In order to allow Yorc to retrieve those values you should depending on your operation
implementation:

	in Bash scripts you should export a variable named as the output variable (case sensitively)

	in Python scripts you should define a variable (globally to your script root not locally to a class or function) named as the output variable (case sensitively)

	in Ansible playbooks you should set a fact named as the output variable (case sensitively)

Node operation

For node operation script, the following variables are available:

	NODE: the node name.

	INSTANCE: the unique instance ID.

	INSTANCES: A comma separated list of all available instance IDs.

	HOST: the node name of the node that host the current one.

	DEPLOYMENT_ID: the unique deployment identifier.

In addition, any inputs parameters defined on the operation definition are also injected.

Relationship operation

For relationship operation script, the following variables are available:

	TARGET_NODE: The node name that is targeted by the relationship.

	TARGET_INSTANCE: The instance ID that is targeted by the relatonship.

	TARGET_INSTANCES: Comma separated list of all available instance IDs for the target node.

	TARGET_HOST: The node name of the node that host the node that is targeted by the relationship.

	SOURCE_NODE: The node name that is the source of the relationship.

	SOURCE_INSTANCE: The instance ID of the source of the relationship.

	SOURCE_INSTANCES: Comma separated list of all available source instance IDs.

	SOURCE_HOST: The node name of the node that host the node that is the source of the relationship.

	DEPLOYMENT_ID: the unique deployment identifier.

In addition, properties and attributes of the target capability of the relationship are injected automatically.
We do this as they can only be retrieved by knowing in advance the actual name of the capability, which is not
very practical when designing a generic operation. As a target component may have several capabilities that match
the relationship capability type we inject the following variables:

	TARGET_CAPABILITY_NAMES: comma-separated list of matching capabilities names. It could be used to loop over the injected variables

	TARGET_CAPABILITY_<capabilityName>_TYPE: actual type of the capability

	TARGET_CAPABILITY_TYPE: actual type of the capability of the first matching capability

	TARGET_CAPABILITY_<capabilityName>_PROPERTY_<propertyName>: value of a property

	TARGET_CAPABILITY_PROPERTY_<propertyName>: value of a property for the first matching capability

	TARGET_CAPABILITY_<capabilityName>_<instanceName>_ATTRIBUTE_<attributeName>: value of an attribute of a given instance

	TARGET_CAPABILITY_<instanceName>_ATTRIBUTE_<attributeName>: value of an attribute of a given instance for the first matching capability

Finally, any inputs parameters defined on the operation definition are also injected.

Attribute and multiple instances

	When an operation defines an input, the value is available by fetching an environment variable. If you have multiple instances,

	you’ll be able to fetch the input value for all instances by prefixing the input name by the instance ID.

Let’s imagine you have an relationship’s configure interface operation defined like this:

add_target:
 inputs:
 TARGET_IP: { get_attribute: [TARGET, ip_address] }
 implementation: scripts/add_target.sh

Let’s imagine we have a node named MyNodeS with 2 instances: MyNodeS_1, MyNodeS_2. The node MyNodeS is connected to the target
node MyNodeT which has also 2 instances MyNodeT_1 and MyNodeT_2.

When the add_target.sh script is executed for the relationship instance that connects MyNodeS_1 to MyNodeT_1, the following
variables will be available:

TARGET_NODE=MyNodeT
TARGET_INSTANCE=MyNodeT_1
TARGET_INSTANCES=MyNodeT_1,MyNodeT_2
SOURCE_NODE=MyNodeS
SOURCE_INSTANCE=MyNodeS_1
SOURCE_INSTANCES=MyNodeS_1,MyNodeS_2
TARGET_IP=192.168.0.11
MyNodeT_1_TARGET_IP=192.168.0.11
MyNodeT_2_TARGET_IP=192.168.0.12

Orchestrator-hosted Operations

In the general case an operation is an implementation of a step within a node’s lifecycle
(install a software package for instance). Those operations should be executed on the Compute that hosts
the node. Yorc handles this case seamlessly and execute your implementation artifacts on the required host.

But sometimes you may want to model in TOSCA an interaction with something (generally a service) that is
not hosted on a compute of your application.
For those usecases the TOSCA specification support a tag called operation_host this tag could be set either
on an operation implementation [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html#DEFN_ELEMENT_OPERATION_DEF]
or on a workflow step [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html#DEFN_ENTITY_WORKFLOW_STEP_DEFN].
If set to the keyword ORCHESTRATOR this tag indicates that the operation should be executed on the host of the
orchestrator.

For executing those kind of operations Yorc supports two different behaviors. The first one is to execute implementation
artifacts directly on the orchestrator’s host. But we think that running user-defined bash or python scripts
directly on the orchestrator’s host may be dangerous. So, Yorc offers an alternative that allows to run those
scripts in a sandboxed environment implemented by a Docker container. This is the recommended solution.

Choosing one or the other solution is done by configuration see
ansible hosted operations options in the configuration section.
If a default_sandbox option is provided, it
will be used to start a docker sandbox. Otherwise if
unsandboxed_operations_allowed is set to true
(defaults to false) then operations are executed on orchestrator’s host. Otherwise Yorc will rise an
error if an orchestrator hosted operation should be executed.

In order to let Yorc interact with Docker to manage sandboxes some requirements should be met on the Yorc’s host:

	Docker service should be installed and running

	Docker CLI should be installed

	the pip package docker_py should be installed

Yorc uses standard Docker’s APIs so DOCKER_HOST and DOCKER_CERT_PATH environment variables could be used
to configure the way Yorc interacts with Docker.

In order to execute operations on container some minimal requirements should also be met on Docker images used
as sandboxes:

	the /usr/bin/env command should be present

	a python 2 interpreter compatible with ansible 2.4.1.0 should be available as the python command

apart those above requirements you can install whatever you want in your Docker image as prerequisites of your
operations artifacts.

Yorc will automatically pull the required Docker image and start a separated Docker sandbox before each
orchestrator-hosted operation and automatically destroy it after the operation execution.

Caution

Currently setting operation_host on operation implementation is supported in Yorc but not in Alien4Cloud.
That said, when using Alien4Cloud workflows will automatically be generated with operation_host=ORCHESTRATOR
for nodes that are not hosted on a Compute.

Run Yorc in Secured mode

To run Yorc in secured mode, the following issues have to be addressed:

	Setup a secured Consul cluster

	Setup a secured Yorc server and configure it to use a secured Consul client

	Setup Alien4Cloud security and configure it to use the secured Yorc server

To secure the components listed above, and enable TLS, Multi-Domain (SAN) certificates need to be generated.
A short list of commands based on openSSL is provided below.

Generate SSL certificates with SAN

The SSL certificates you will generate need to be signed by a Certificate Authority.
You might already have one, otherwise, create it using OpenSSL commands below:

openssl genrsa -aes256 -out ca.key 4096
openssl req -new -x509 -days 365 -key ca.key -sha256 -out ca.pem

Generate certificates signed by your CA

You need to generate certificates for all the software component to be secured (Consul, Yorc, Alien4Cloud).

Use the commands below for each component instance (where <IP> represents host’s IP address used to connect to):

openssl genrsa -out comp.key 4096
openssl req -new -sha256 -key comp.key -subj "/C=FR/O=Atos/CN=127.0.0.1" -reqexts SAN -config <(cat /etc/pki/tls/openssl.cnf <(printf "[SAN]\nsubjectAltName=IP:127.0.0.1,IP:<IP>,DNS:localhost")) -out comp.csr
openssl x509 -req -in comp.csr -CA ca.pem -CAkey ca.key -CAcreateserial -out comp.pem -days 2048 -extensions SAN -extfile <(cat /etc/pki/tls/openssl.cnf <(printf "[SAN]\nsubjectAltName=IP:127.0.0.1,IP:<IP>,DNS:localhost"))

In the sections below, the comp.key and comp.pem files are used to define the different components’ configuration.

Secured Consul cluster Setup

Create a consul.key and consul.pem for all the Consul agents within the Consul cluster you setup:

	the server (you may need 3 servers for HA),

	and the client (you need one client on each host where a Yorc server is running).

Use the above commands and replace <IP> and <SERVER_IP> by the host’s IP address.

Check Consul documentation for details about agent’s configuration [https://www.consul.io/docs/agent/options.html] and network traffic encryption [https://www.consul.io/docs/agent/encryption.html].

You may find below a typical configuration file for a consul server:

{
 "domain": "starlings",
 "data_dir": "/tmp/work",
 "client_addr": "0.0.0.0",
 "advertise_addr": "{SERVER_IP}",
 "server": true,
 "bootstrap": true,
 "encrypt": "{ENCRYPT_KEY}",
 "ports": {
 "https": 8543
 },
 "key_file": "{PATH_TO_CONSUL_SERVER_KEY}",
 "cert_file": "{PATH_TO_CONSUL_SERVER_PEM}",
 "ca_file": "{PATH_TO_CA_PEM}",
 "verify_incoming": true,
 "verify_outgoing": true
}

And below, one for a consul client.

{
 "domain": "starlings",
 "data_dir": "/tmp/work",
 "client_addr": "0.0.0.0",
 "advertise_addr": "{IP}",
 "ui": true,
 "retry_join": ["{SERVER_IP}"],
 "encrypt": "{ENCRYPT_KEY}",
 "ports": {
 "https": 8543
 },
 "key_file": "{PATH_TO_CONSUL_CLIENT_KEY}",
 "cert_file": "{PATH_TO_CONSUL_CLIENT_PEM}",
 "ca_file": "{PATH_TO_CA_PEM}",
 "verify_incoming_rpc": true,
 "verify_outgoing": true
}

You can also consult this Blog [http://russellsimpkins.blogspot.fr/2015/10/consul-adding-tls-using-self-signed.html].
You may found useful information about how to install CA certificate in the OS, in case you get errors about trusting the signing authority.

Secured Yorc Setup

Create a yorc-server.key and yorc-server.pem using the above commands and replace <IP> by the host’s IP address.

Bellow is an example of configuration file with TLS enabled and using the collocated and secured Consul client.

{
 "consul": {
 "ssl": "true",
 "ca_cert": "{PATH_TO_CA_PEM}",
 "key_file": "{PATH_TO_CONSUL_CLIENT_KEY}",
 "cert_file": "{PATH_TO_CONSUL_CLIENT_PEM}",
 "address": "127.0.0.1:8543",
 },
 "resources_prefix": "yorc1-",
 "key_file": "{PATH_TO_YORC_SERVER_KEY}",
 "cert_file": "{PATH_TO_YORC_SERVER_PEM}",
 "ssl_verify": true,
 "infrastructures" : {
 "openstack": {
 "auth_url": "https://your-openstack:{OPENSTACK_PORT}/v2.0",
 "tenant_name": "your-tenant",
 "user_name": "os-user",
 "password": "os-password",
 "private_network_name": "default-private-network",
 "default_security_groups": ["default"]
 }
 }
}

As for Consul, you may need to install CA certificate in the OS, in case you get errors about trusting the signing authority.

Secured Yorc CLI Setup

If ssl_verify is enabled for Yorc server the Yorc CLI have to provide a client certificate signed by the Yorc’s Certificate Authority.

So, create a yorc-client.key and yorc-client.pem using the above commands and replace <IP> by the host’s IP address.

Bellow is an example of configuration file with TLS enabled. Refer to Yorc Client CLI Configuration for more information.

{
 "key_file": "{PATH_TO_YORC_CLIENT_KEY}",
 "cert_file": "{PATH_TO_YORC_CLIENT_PEM}",
 "ca_file": "{PATH_TO_CA_PEM}",
 "yorc_api": "<YORC_SERVER_IP>:8800"
}

Setup Alien4Cloud security

See the corresponding Chapter in Alien4Cloud plugin documentation

Integrate Yorc with a Vault

A Vault is used to store secrets in a secured way.

Yorc allows to interact with a Vault to retrieve sensitive data linked to infrastructures such as
passwords.

Currently Yorc supports only Vault from HashiCorp [https://www.vaultproject.io/] we plan to
support others implementations in Yorc either builtin or by plugins.

The vault integration allows to specify infrastructures parameters as Go Template [https://golang.org/pkg/text/template/] format and to use
a specific function called secret this function takes one argument that refers to the secret identifier and an optional list of string arguments
whose signification is dependent to the Vault implementation. This function returns an object implementing the vault.Secret interface which has two
functions String() that returns the string representation of a secret and Raw() that returns a Vault implementation-dependent object. The
second way most powerful but you should look at the Vault implementation documentation to know how to use it.

HashiCorp’s Vault integration

HashiCorp’s Vault integration is builtin Yorc. Please refer to the HashiCorps Vault configuration section to know how to
setup a connection to a running Vault. For more information about Vault itself please refer to its online documentation [https://www.vaultproject.io/].

Here is how the secret function is handled by this implementation, the usage is:

secret "/secret/path/in/vault" ["options" ...]

Recognized options are:

	data=targetdata: Vault allows to store multiple keys/values within a map called Data, this option allows to render only the kay named targetdata. Only one data option is allowed.

The String() function on the returned secret will render the whole map if there is no data options specified.

The Raw() function on the returned secret will return a github.com/hashicorp/vault/api.Secret [https://godoc.org/github.com/hashicorp/vault/api#Secret].

Bellow are some of the most common ways to get a specific secret using the templating language:

	{{ with (secret "/secret/yorc/mysecret").Raw }}{{ .Data.myKey }}{{end}}

	{{ secret "/secret/yorc/mysecret" "data=myKey" | print }}

	{{ (secret "/secret/yorc/mysecret" "data=myKey").String }}

Run Yorc in High Availability (HA) mode

High level view of a typical HA installation

The bellow figure illustrates how a typical Yorc setup for enabling High Availability looks like.

[image: Typical Yorc HA setup]
This setup is composed by the following main components:

	A POSIX distributed file system (NFS as an example in the figure above) to store deployments recipes (Shell scripts, Ansible recipes, binaries…)

	A cluster of Consul servers

	A cluster of Yorc servers each one collocated with a Consul agent and connected to the distributed filesystem

	A Alien4Cloud with the Yorc plugin collocated with a Consul agent

The next sections describes how to setup those components.

Yorc HA setup

Distributed File System

Describing how to setup a Distributed File System (DSF) is out of the scope of this document.
When choosing your DSF please take care to verify that it is POSIX compatible and can be mounted as linux partition.

Consul servers

To setup a cluster of Consul servers please refer to the Consul online documentation [https://www.consul.io/docs/guides/bootstrapping.html].
One important thing to note is that you will need 3 or 5 Consul servers to ensure HA.

Yorc servers

Each Yorc server should be installed on its own host with a local Consul agent and a partition mounted on the Distributed File System.
The Consul agent should run in client mode (by opposition to the server mode).
Here is how to run a Consul agent in client mode and connect it to a running Consul server cluster.

consul agent -config-dir ./consul-conf -data-dir ./consul-data -retry-join <ConsulServer1IP> -retry-join <ConsulServer2IP> -retry-join <ConsulServer3IP>

When starting the Yorc server instance, a Consul service is automatically created with a defined TCP check on Yorc port.

When running Yorc you should use the –server_id command line flag
(or equivalent configuration options or environment variable) to specify the server ID used to identify the server node in a cluster.

When running Yorc you should use the –working_directory command line flag
(or equivalent configuration options or environment variable) to specify a working directory on the
Distributed File System.

Alien4Cloud

Please refer to the dedicated Yorc plugin for Alien4Cloud documentation for its typical installation and configuration.

Install and run Consul agent in client mode.

consul agent -config-dir ./consul-conf -data-dir ./consul-data -retry-join <ConsulServer1IP> -retry-join <ConsulServer2IP> -retry-join <ConsulServer3IP> -recursor <ConsulServer1IP> -recursor <ConsulServer2IP> -recursor <ConsulServer3IP>

Configure Consul DNS forwarding [https://www.consul.io/docs/guides/forwarding.html] in order to be able to resolve yorc.service.consul DNS domain name.

In the Yorc plugin for Alien4Cloud configuration use http://yorc.service.consul:8800 as Yorc URL instead of using a IP address.
This DNS name will be resolved by Consul (using a round-robin algorithm) to available Yorc servers.

If a Yorc server becomes unavailable, then Consul will detect it by using the service check and will stop to resolve the DNS requests to this Yorc instance, allowing seamless failover.

Run Yorc in a docker container

Along with a Yorc release we also provide a docker image that ships Yorc and its dependencies.

This docker image is published in several ways:

	A tgz version of the image is published on the github release page [https://github.com/ystia/yorc/releases] for each release.

	Pre-release (milestone) versions and development branches are published in bintray [https://bintray.com/ystia/yorc].
You can use it to pull the image directly from the docker command.
For instance: docker pull ystia-docker-yorc.bintray.io/ystia/yorc:3.0.0-M5

	Starting with Yorc 3.0 GA version are also published on the docker hub [https://hub.docker.com/r/ystia/yorc/]
You can use it to pull the image directly from the docker command.
For instance: docker pull ystia/yorc:3.0.0

Image components

This Docker image is made of the following components:

S6 init system

We use the S6 overlay for containers [https://github.com/just-containers/s6-overlay] in order to
have a minimal init system that supervise our services and
reap zombies processes [https://blog.phusion.nl/2015/01/20/docker-and-the-pid-1-zombie-reaping-problem/].

Consul

Consul [https://www.consul.io/] is the distributed data store for Yorc. By default it will run in an isolated server mode
to provide a fully fonctional container out of the box. But it could be configured to connect
to a server and run in agent mode.

The Consul binary is installed in this image as described in the
Yorc install section. It is run as a user and group named consul.
Consul data directory is set by default to /var/consul.

Configure Consul

To configure Consul in the container you can either mount configuration files into /etc/consul
or use environment variables. Following special variables are recognized:

	CONSUL_MODE: if set to server or not defined then Consul will run in server mode. Any other configuration
will lead to Consul running in agent mode.

	NB_CONSUL_SERVER: allows to set the bootstrap-expect [https://www.consul.io/docs/agent/options.html#_bootstrap_expect]
command line flag for consul. If CONSUL_MODE is server and NB_CONSUL_SERVER is not defined then it defaults to 1.

	SERVERS_TO_JOIN: allows to provide a coma-separated list of server to connects to. This works either in server or agent mode.

In addition any environment variable that starts with CONSUL_ENV_ will be added to a dedicated consul configuration file.
The format is CONSUL_ENV_<option_name>=<config_snippet>. Here are some examples to make it clear:

docker run -e 'CONSUL_ENV_ui=true' -e 'CONSUL_ENV_watches=[{"type":"checks","handler":"/usr/bin/health-check-handler.sh"}]' -e 'CONSUL_ENV_datacenter="east-aws"' ystia/yorc

Will result in the following configuration file:

{
 "ui": true,
 "watches": [{"type":"checks","handler":"/usr/bin/health-check-handler.sh"}],
 "datacenter": "east-aws"
}

go-dnsmasq

go-dnsmasq is a lightweight DNS caching server/forwarder with minimal filesystem and runtime overhead.
It is used in this image to forward any *.consul dns request directly to Consul and forward others
dns requests to your standard upstream dns server. This allows to support dns resolving of Consul
services out of the box.

Ansible & Terraform

Ansible [https://www.ansible.com/] and Terraform [https://www.terraform.io/] are installed in this image as described in the
Yorc install section.

There is no specific configuration needed for those components.

Docker

The Docker client binary and the docker-py python library are installed in this image as described in the
Yorc install section.

They are necessary to support Orchestrator-hosted operations
isolated in a Docker sandbox.

In order to let Yorc run Docker containers you should either expose the Docker service of your host in TCP
and configure Yorc to use this endpoint or mount the Docker socket into the container (recommended).

Here is the command line that allows to mount the Docker socket into the Yorc container:

Using the --mount flag (recommended way on Docker 17.06+)
docker run --mount "type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock" ystia/yorc
Using the -v flag (for Docker < 17.06)
docker run -v /var/run/docker.sock:/var/run/docker.sock ystia/yorc

Yorc

The Yorc binary is installed in this image as described in the
Yorc install section.

Yorc is run as a yorc (group yorc) user. This user’s home directory is
/var/yorc and the yorc process is run within that directory. Yorc’s plugins can be
added using a mount within the /var/yorc/plugins directory.

Configuring Yorc

To configure Yorc you can either mount a config.yorc.[json|yaml] into the /etc/yorc
directory or use Yorc standard environment variables (for both cases see Yorc Server Configuration section)

Yorc Telemetry

Yorc collects various runtime metrics. These metrics are aggregated on a ten second interval and are retained for one minute.

To view this data, you must send a signal to the Yorc process: on Unix, this is USR1 while on Windows it is BREAK. Once Yorc receives the signal, it will dump the current telemetry information to stderr.

Telemetry information can be streamed to both statsite as well as statsd or pull from Prometheus based on providing the appropriate configuration options. See Telemetry configuration for more information.

Below is sample output (lot of metrics omitted for brevity) of a telemetry dump:

[2017-07-19 16:31:00 +0200 CEST][G] 'yorc.yorc-server-0.runtime.alloc_bytes': 73723728.000
[2017-07-19 16:31:00 +0200 CEST][G] 'yorc.yorc-server-0.workers.free': 2.000
[2017-07-19 16:31:00 +0200 CEST][C] 'yorc.http.200.GET.metrics': Count: 2 Sum: 2.000 LastUpdated: 2017-07-19 16:31:06.253380804 +0200 CEST
[2017-07-19 16:31:00 +0200 CEST][S] 'yorc.tasks.maxBlockTimeMs': Count: 10 Sum: 0.000 LastUpdated: 2017-07-19 16:31:09.805073861 +0200 CEST
[2017-07-19 16:31:00 +0200 CEST][S] 'yorc.http.GET.metrics': Count: 2 Min: 27.765 Mean: 29.474 Max: 31.183 Stddev: 2.417 Sum: 58.948 LastUpdated: 2017-07-19 16:31:06.253392224 +0200 CEST
[2017-07-19 16:31:10 +0200 CEST][S] 'yorc.tasks.maxBlockTimeMs': Count: 10 Sum: 0.000 LastUpdated: 2017-07-19 16:31:19.986227315 +0200 CEST
[2017-07-19 16:31:20 +0200 CEST][C] 'yorc.http.200.GET.metrics': Count: 2 Sum: 2.000 LastUpdated: 2017-07-19 16:31:26.257243322 +0200 CEST
[2017-07-19 16:31:20 +0200 CEST][S] 'yorc.tasks.maxBlockTimeMs': Count: 9 Sum: 0.000 LastUpdated: 2017-07-19 16:31:29.138694946 +0200 CEST
[2017-07-19 16:31:20 +0200 CEST][S] 'yorc.http.GET.metrics': Count: 2 Min: 32.371 Mean: 41.727 Max: 51.083 Stddev: 13.232 Sum: 83.454 LastUpdated: 2017-07-19 16:31:26.257253638 +0200 CEST

Key metrics

Metric Types

	Type

	Description

	Quantiles

	Gauge

	Gauge types report an absolute number at the end of the aggregation interval.

	false

	Counter

	Counts are incremented and flushed at the end of the aggregation interval and then are reset to zero.

	true

	Timer

	Timers measure the time to complete a task and will include quantiles, means, standard deviation, etc per interval.

	true

Go Runtime metrics

	Metric Name

	Description

	Unit

	Metric Type

	yorc.runtime.num_goroutines

	This tracks the number of running goroutines and is a general load pressure
indicator. This may burst from time to time but should return to a steady
state value.

	number
of
goroutines

	gauge

	yorc.runtime.alloc_bytes

	This measures the number of bytes allocated by the Yorc process. This may
burst from time to time but should return to a steady state value.

	bytes

	gauge

	yorc.runtime.heap_objects

	This measures the number of objects allocated on the heap and is a general memory
pressure indicator. This may burst from time to time but should return to a steady state value.

	number of objects

	gauge

	yorc.runtime.sys

	Sys is the total bytes of memory obtained from the OS.Sys measures the virtual address space
reserved by the Go runtime for the heap, stacks, and other
internal data structures. It’s likely that not all of the virtual address space is backed
by physical memory at any given moment, though in general it all was at some point.

	bytes

	gauge

	yorc.runtime.malloc_count

	Mallocs is the cumulative count of heap objects allocated. The number of live objects is
Mallocs - Frees.

	number of Mallocs

	gauge

	yorc.runtime.free_count

	Frees is the cumulative count of heap objects freed.

	number of frees

	gauge

	yorc.runtime.total_gc_pause_ns

	PauseTotalNs is the cumulative nanoseconds in GC stop-the-world pauses since the program
started.
During a stop-the-world pause, all goroutines are paused and only the garbage collector can run.

	nanoseconds

	gauge

	yorc.runtime.total_gc_runs

	Gc runs is the number of completed GC cycles.

	number of cycles

	gauge

	yorc.runtime.gc_pause_ns

	Latest GC run stop-the-world pause duration.

	nanoseconds

	timer

Yorc REST API metrics

	Metric Name

	Description

	Unit

	Metric Type

	yorc.http.<Method>.<Path>

	This measures the duration of an API call. <Method> is the HTTP verb and <Path> the
Path part of the URL where slashes are replaced by dashes.

	milliseconds

	timer

	yorc.http.<Status>.<Method>.<Path>

	This counts the number of API calls by HTTP status codes (ie: 200, 404, 500, …)
, HTTP verb and URL path as described above.

	number of requests

	counter

Yorc Workers & Tasks metrics

	Metric Name

	Description

	Unit

	Metric Type

	yorc.workers.free

	This tracks the number of free Yorc workers.

	number of free
workers

	gauge

	tasks.maxBlockTimeMs

	This measures the highest duration since creation for all waiting tasks.

	milliseconds

	timer

	tasks.nbWaiting

	This tracks the number of tasks waiting for being processed.

	number of
tasks

	gauge

	tasks.wait

	This measures the finally waited time for a task being processed.

	milliseconds

	timer

	task.<DepID>.<Type>.<FinalStatus>

	This counts by deployment and task type the final status of a task.

	number of tasks

	counter

	task.<DepID>.<Type>

	This measures the task processing duration.

	milliseconds

	timer

Yorc Executors metrics

There are two types of executors in Yorc “delegates executors” and “operations executors”. Delegates executors handle the deployment of Yorc natively supported
TOSCA nodes (like an Openstack compute for instance) while Operations executors handle implementations of an lifecycle operations provided as part of the TOSCA node
definition (like a shell script or an ansible playbook).

In the below table <ExecType> is the executor type, <DepID> the deployment ID, <NodeType> the fully qualified TOSCA node type where dots where replaced by
dashes and <OpName> the TOSCA operation name where dots where replaced by dashes.

	Metric Name

	Description

	Unit

	Metric Type

	yorc.executor.<ExecType>.<DepID>.<NodeType>.<OpName>

	This measures the duration of an execution.

	milliseconds

	timer

	yorc.executor.<ExecType>.<DepID>.<NodeType>.<OpName>.failures

	This counts the number of failed executions.

	number of failures

	counter

	yorc.executor.<ExecType>.<DepID>.<NodeType>.<OpName>.successes

	This counts the number of successful executions.

	number of successes

	counter

Performance

TOSCA Operations

As described in TOSCA Supported Operations implementations, Yorc supports these builtin implementations for operations to execute on remote hosts :

	Bash scripts

	Python scripts

	Ansible Playbooks

It is recommended to implement operations as Ansible Playbooks to get the best execution performance.

When operations are not implemented using Ansible playbooks, the following Yorc Server Ansible configuration settings allow to improve the performance of scripts execution on remote hosts :

	use_openssh: Prefer OpenSSH over Paramiko, a Python implementation of SSH (used by default) to provision remote hosts. OpenSSH have several optimization like reusing connections that should improve preformance but may lead to issues on older systems
See Ansible documentation on Remote connection information [https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html#remote-connection-information].

	cache_facts: Caches Ansible facts [https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#fact-caching] (values fetched on remote hosts about network/hardware/OS/virtualization configuration) so that these facts are not recomputed each time a new operation is a run for a given deployment.

	archive_artifacts: Archives operation bash/python scripts locally, copies this archive and unarchives it on remote hosts (requires tar to be installed on remote hosts), to avoid multiple time consuming remote copy operations of individual scripts.

Index

 _static/plus.png

_static/img/Yorc_HA.png
Yorc
Server

Yorc
Server

Yorc
Server

_static/img/yorc-os-typical-deployment.png
OpenStack Tenant

Yorc
Server VM

Alien4Cloud
VM

Private Network

=
S
)
3
2
()]
2
=
=
=1
a

_static/up-pressed.png

_static/up.png

_images/Yorc_HA.png
Yorc
Server

Yorc
Server

Yorc
Server

_images/yorc-os-typical-deployment.png
OpenStack Tenant

Yorc
Server VM

Alien4Cloud
VM

Private Network

=
S
)
3
2
()]
2
=
=
=1
a

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Yorc 3.0.2 Documentation

 		
 Install Yorc and requirements

 		
 Typical Yorc deployment for OpenStack

 		
 Host requirements

 		
 Packages installation

 		
 Final setup

 		
 Yorc Server Configuration

 		
 Globals Command-line options

 		
 Configuration files

 		
 Ansible configuration

 		
 Consul configuration

 		
 Terraform configuration

 		
 Telemetry configuration

 		
 Deprecated configuration options

 		
 Environment variables

 		
 Infrastructures configuration

 		
 Builtin infrastructures configuration

 		
 OpenStack

 		
 Kubernetes

 		
 Google Cloud Platform

 		
 AWS

 		
 Slurm

 		
 Vault configuration

 		
 Builtin Vaults configuration

 		
 HashiCorp’s Vault

 		
 Yorc Client CLI Configuration

 		
 Command-line options

 		
 Configuration files

 		
 Environment variables

 		
 Starting Yorc

 		
 Starting Consul

 		
 Starting Yorc

 		
 Yorc Command Line Interface

 		
 General Options

 		
 CLI Commands related to deployments

 		
 Deploy a CSAR

 		
 Undeploy a deployment

 		
 List deployments

 		
 Get information on a specific deployment

 		
 Get deployment events

 		
 Get deployment logs

 		
 Get deployment tasks

 		
 Get deployment task info

 		
 Cancel a deployment task

 		
 Resume a deployment task

 		
 Fix a deployment task step

 		
 Scale a specific node

 		
 Execute a custom command

 		
 List workflows of a given deployment

 		
 Execute a workflow on a given deployment

 		
 Show a workflow on a given deployment

 		
 Generate a graphical representation of a workflow on a given deployment

 		
 CLI Commands related to hosts pool

 		
 Add a host pool

 		
 Update a host pool

 		
 Delete a host pool

 		
 List hosts in the pool

 		
 Get information on a specific host in the pool

 		
 Apply a Hosts Pool configuration

 		
 Export a Hosts Pool configuration

 		
 Yorc Supported infrastructures

 		
 Hosts Pool

 		
 Hosts management

 		
 Hosts Pool labels & filters

 		
 Slurm

 		
 Resources based scheduling

 		
 Future work

 		
 Google Cloud Platform

 		
 Future work

 		
 AWS

 		
 Future work

 		
 OpenStack

 		
 Future work

 		
 Kubernetes

 		
 TOSCA support in Yorc

 		
 TOSCA Operations

 		
 Supported Operations implementations

 		
 Execution Context

 		
 Injected Environment Variables

 		
 Operation outputs

 		
 Orchestrator-hosted Operations

 		
 Run Yorc in Secured mode

 		
 Generate SSL certificates with SAN

 		
 Generate certificates signed by your CA

 		
 Secured Consul cluster Setup

 		
 Secured Yorc Setup

 		
 Secured Yorc CLI Setup

 		
 Setup Alien4Cloud security

 		
 Integrate Yorc with a Vault

 		
 HashiCorp’s Vault integration

 		
 Run Yorc in High Availability (HA) mode

 		
 High level view of a typical HA installation

 		
 Yorc HA setup

 		
 Distributed File System

 		
 Consul servers

 		
 Yorc servers

 		
 Alien4Cloud

 		
 Run Yorc in a docker container

 		
 Image components

 		
 S6 init system

 		
 Consul

 		
 go-dnsmasq

 		
 Ansible & Terraform

 		
 Docker

 		
 Yorc

 		
 Yorc Telemetry

 		
 Key metrics

 		
 Metric Types

 		
 Go Runtime metrics

 		
 Yorc REST API metrics

 		
 Yorc Workers & Tasks metrics

 		
 Yorc Executors metrics

 		
 Performance

 		
 TOSCA Operations

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

